Transpato

Team Members

The Autonomous Car Solution for Shipping Centers

Team 2

—Steverr-ramr

Alec Probst
Bennett James
Nolan Joyce

TS doTumEnt Tontatns nformatiom that s PRVIEEGEDamd

Originator:AuthorT

Checked: | Released:

Filename: Project 10 Writeup Draft.docx

Tltle:Transpato

The Autonomous Car Solution for Shipping Centers

CONFIDENTIAL; you are hereby notified that any dissemination
of this information is strictly prohibited.

Ddlc. LDJOCUITICIIT INUITIOCT .

05/01/2019 | 0-0000-000-0000-01

Rev:

5D

PIICCL.

1of 73

0-0002-001-0001-00 Document Format Sheet

Printed 12/13/19 5:07 PM

Revision | Description

1A Project 02 Test Process Section added, hardware pictures added,

1B Helped write Scope, created diagrams and edited articles

1C Took pictures, created abbreviation and block diagrams

1D Added Hardware Section, Formatted document, formatted pictures, added Scope.

2A Revised small formatting mistakes, added to hardware section, added abbreviations,
changed revision table

2B Created the rest of the diagrams, wrote paragraphs for section 3 diagrams, worked on
abbreviations

2C Formatting, Pictures, miscellaneous revisions.

2D Cover Page, Table of Contents, Formatting.

3A Created Flowchart for Interrupts, Added code for Interrupt and ADC configuration,

overview section

3B Edited all changes to figures and abbreviations. Created Timer Function description and
Flowchart

3C Added ports description, code, and flowchart

3D Created flowchart for main, revised scope, added description for main. Attached code

4A Created flowchart for Serial Communications, fixed code issue from revision 3D

4B Added descriptions and code for the serial communication interrupts and initialization.

4C Reworked figure numbers, compiled new revisions into final, and removed unnecessary
details.

4D Added tests for blackline following, serial communications. Revised code.

5A Power Analysis, added code/description/figures for personal main.c, irledconfig.c, and

switches.c files, fixed overall flowcharts/diagrams to add in communication, added IOT

5B Fixed tables of figures, updated scope, half to full hbridge description, flowcharts and
descriptions for functions and a main function.

5C Added Power Analysis, added Conclusion, added main flowchart, network config
flowchart, menu flowchart, and forward flowchart, added relevant code.

5D Added serial communication overview, hardware, and software descriptions. Added main
function code and other function codes with corresponding flowcharts

This document contains information that is PRIVILEGED and
CONFIDENTIAL; you are hereby notified that any dissemination
of this information is strictly prohibited.

Date:

05/01/2019

Document Number:

0-0000-000-0000-01

Rev:

5D

Sheet:

2 of 73

Printed 12/13/19 5:07 PM

Table of Contents

I. N Te0] oL OO PRSPPSO 6
2. ADDICVIALIONS ...ttt et e et e e et e e e e ettt e e e e eta e e e e eaaeeeeeeaaeeeeeeataaeeeeaaeeeeenrreeeeans 6
3. OVEIVICWetveieeeeteeee e e et e e et e e e e e e e eete e e e eeaaeeeeeeatseeeeeeaaseeeeeaeeeeeenatsseeeeeaseeeeeeaseeeeennreeeeeannres 7
3.1 USCE INTETTACE ..ottt e e e e e et e e e e tae e e e eeaaaeeeeetaeeeeeenreeeeeenenes 7
3.2. POWET BOATAcoiiiiiiiiieieeeeeeee ettt e e e et e e e et e e e e eaae e e e enaraeeeeennns 7
3.3. HoBIIAZE ..ottt ettt et e et e et e et e e seeesbaessbeesbeeesseenseeenseenseessneensaens 8
34. Black LINE DELECTOT ..cocvvviiieeiiiiee ettt e et e e et e e e eeaae e e eetaeeeeenasaeeeeennnes 8
3.5. Serial COMMUNICALIONccuviiiiieiieeeeeeieeeeeeteeeeeeteeeeeeeaeeeeeeaaeeeeeeareeeeeeseeeeeeeaseeeeeerseeeeenaneeens 8
4, HATAWATeveiieeeeeeee e e e e e e e et e e e e e e e e eetaaeeeeeareeeeeeaseeeeeeaseeeeens 9
4.1. USCE INTETTACE ..o e et e e e et e e e et e e e e eeaaaeeeeeaaeeeeennreeeeeennnes 9
4.2. POWET BOATAooiiiiiiiieieeeeeeee e e e e e e et eeeetae e e e eeareeeeeeanreeeens 10
4.3. HoBIIAZE ..ottt ettt et ettt e st e et e s st e et e e sabe e bt e e sbeenbeensbeenseennnes 11
4.4, Black LINE DELECTOT ...oouvveiieeiiiiee ettt ee et e e e e e e e aeeeeeetaeaeeeeareeeeeeanreeeens 13
4.5. Serial COMMUINICALIONSuvveeieeieiieeeeiieieeeeeteeeeeeetteeeeeeeteeeeeeetaeeeeeeaeeeeeeeaseeeeeeaseeeeenrreeeeennes 14
5. POWET ANALYSIS ..eeiiiieiiieciit ettt ettt ettt et ettt e st e e b e s b e e bt e at e e bt e e tbe e taenabeenbeenneas 15
6. TSt PIOCESS ..ottt ettt e e e e e et et e e e e e eeeeesataeaeeeeeeeeesetarrreeeeeeeeenanrrnes 16
6.1. FUIL H-BIIAZE ..ottt ettt ettt e sttt esabe e bt e s st e enseessseenseennnes 17
6.2. LANE FOLLOW ..ot e e e e et e e e eetaeeeeeeaareeeeenanreeeens 17
6.3. Serial COMMUNICALIONccuvviiieiiieieeeeeieeeeeeeteeeeeeeaeeeeeeitaeeeeeeteeeeeesaeeeeeeaseeeeeeareeeeennsreeeeennes 18
7. SOTEWATE ...t e et e et e e et e e e e aeeeeeetaeeeeeeataeeeeeetaeeeeeetreeeeeenareeeeennees 18
7.1. IMLAIIL .ot e et e e e e e e et e e et e e e e ea—t e e e e tbaeeeetataeeeatraeeeenrreaeaans 18
7.2. POTES ..t e e e e e et ———ae e e e e ee e ————aaaaeeeeaeranaaaaaeas 18
7.3. INtErrupts AN ADCeiiiiieiiee ettt ettt et e et enbeebeesnaeebeen 18
7.4. TIIMICTS ..ttt e e e e e et e e e ettt e e e eetaeeeeeeaaeeeeeeaaseeeeeaaseeeeearseeeeetaeeeeenntreeeeennes 19
7.5. Serial COMMUINICALIONSvveiiiiiirieeeeiieieeeeeieeeeeeiaeeeeeeitaeeeeeeteeeeeeeaeeeeeeeaseeeeeeareeeeensreeeeensnes 19
8. FIOW CRAI ... eeae e e ettt e e e et e e e eeaaaeeeeeaaeeeeeeareaeeeeaaeeeeeerareeeans 20
8.1. Main BIOCKS (INOLAIN)oiiiiiiieiiic ettt et e e et e e e e e s veeeeaneeennreeens 20
8.2. Main BIOCKS (BENNELE)ccuviiiiiiiiiiiiciie ettt e e e e v e e eaaeeeeaneeeas 21
8.3. Main BIOCK (ALCC)...uviiiiiie ettt ettt et e et e et e e e ae e e s ve e e s abeeesaneeenneaens 22
8.4. Main BIOCKS (STEVEIN)uiiiiiiiiiiiiciieece ettt e e e e ae e e e e e e e veeeeaseeenareaens 23
8.5. o) o £ RSP E TSR UTP 24
8.6. INtErrupts AN ADCviiiiieiieeee ettt ettt ettt e et eenbe e bt e snaeeneens 24
8.7. TIIMICTS ..ttt et e et e e et e e e et aae e e e e et e e e e eeaaeeeeeetaeeeeeeaeseeeeeareeeeeeaneeeeeennreeeeennes 25
8.8. Serial RX and TX ProCESSING.......c.ceecvieruieiiiienieeiienieeteeeiteettesee et esiteeseessreeseessseenseessseenseens 26
8.9. Display.c FIOWCHATTcooiiiiiiiiieiece ettt ettt et et sibe b e ennas 27
8.10. Movements.C FIOWCRAIt.........c...ooiiiiiiiiiiiieie et e eaeee e 27
B.l1. AD PrOCESSES.Counrrieruiiieriiieeniiieeriteesitteeettte ettt e sttt e sbteesateeesateeesteeesseesaseesnseeesabeeesaseeensseesnnseenns 28
B 12, FOIWATIA.Cooooneeieeeeeeeee e et e e e e e ettt e e e et e e e e eetteeeeeeaaeeeeentseeeeenanreeeans 28
B 13, IMICIIULC coeeiiiiieiieeeeee ettt ettt e e e et ee et e e e e e e eeee et b araaeeeeeea e e tbraaaeaeeeeeannaraaraaaaeeeenans 29
.14, NEtWOTKCONTIZ.Coueiiiiiiiiiiiee ettt sttt et e et e e bt e e sbeeseeesee e 30
B L5, ATCOMTIZ.C ettt ettt ettt ettt e et e bt e et e e bt e sabeeseesabeenseeenseenseeenbeenseesnseenseennseenns 31
B.10. SWILCHES PIOCESES.Curnrrreniiiiieeiiieiieeiieeite et e site e bt estteeeteesteeeabeenseessbeenseessseenseeenseenseassseenseensseenns 32
0. SOTEWATE LASTINZ ..euiientieiiiieiieeie ettt ettt ettt et e st e ebeesabeesbeessbeenseesnbeenseassseenseesaseenseennnes 32
9.1. MaIN.C (NOIAN) ..ttt ettt ettt e e etb e e e tbe e etaeeetbeesbeeesssaeesasesessseeenaseeens 32
9.2. MaN.C (BENNEIL).......viiiiiiiiiiie ettt ettt e et e e etb e e etb e e s beeeeaseeesabaeesnseeenareaens 37
9.3. IMAAIN.C (ALCC) ittt ettt e et e et e e e taeeetbeestaeesaseeesasaeesasaeesnseeennreeans 39

This document contains information that is PRIVILEGED and Date: Document Number: Rev: Sheet:

CONFIDENTIAL; you are hereby notified that any dissemination
of this information is strictly prohibited. 05/01/2019 0-0000-000-0000-01 5D 3of 73

Printed 12/13/19 5:07 PM

94. IMAIN.C (STEVEIN) ..viiiiiiieiiie ettt e e e et e e st e e e taeeeetbee e taeeessaeesssbeesssseessseeesasaeessseeennseeans 42
9.5. POTES.C ettt ettt et e et e ettt e et e et e e sab e e e s bt e e nabeeenabeeeas 45
9.6. INECTTUPL.C .ottt ettt et e ettt e ettt e st e e sabt e e enbteesabeeenabeeennbeeennee 50
9.7. TTIIMIETS.C e eitte ettt ettt ettt et et e et esae e et e esteeabeebteenbeenseeesbeenseeenbeenseasnseenseesnsaenseassseenseans 53
9.8. SEITAL COMLC ..ttt ettt ettt et e et e et e e bt e s saeesseessbeenbeasssesnseesssaenseasssesnsaens 54
9.9. DT o)) 2 OO OO 58
0.10. MMOVEIMENES.C ..vvieniiieiiiieeitteeiitee ettt e ettt e ettt e st e e sabeeesabee e ateesabeeesaeesnsteesasbeesaseeesaseeennseeennseesnseas 61
O.11. A PTOCESSES.Crreuuririurieiitieiiieeeiteeeitteestteeetteessbeeesatee e aseeeaseessseesnsteesasteesnseeesaseeenaseesnnseesnnseas 63
012, FOTWATA.Co vttt ettt ettt et e st e e bt e sabeesbeessbe et eeeabeenseassseenseesnseenseasnsennseens 64
L2 S T 141 110 X OO OO 65
0.14, NEIWOTKCONTIZ.C.veeiiieiie ettt ettt e b e et eebe e s saeesteesabeesbeesnseensaens 68
015, ATCOMNTIZ.C ittt ettt ettt et e st e et e e s et e esbeeesae et eeesbeenseassseenseesnseenseasnseenseens 69
0.16. SWILCH PIOCESSES.C .uvveiiieuiieiiiiiiieeiieetie st erteestteeteeseteebeessteesseessseeseessseenseassseenseessseenseanssesnseens 71
LO. CONCIUSION ..ttt ettt ettt et e et e st e et e e aeeeabe e seeesbeenseeenbeenseasnseensaennseenseannnas 72
This document contains information that is PRIVILEGED and Date: Document Number: Rev: Sheet:

CONFIDENTIAL; you are hereby notified that any dissemination

of this information is strictly prohibited. 05/01/2019 0-0000-000-0000-01 5D 4 of 73

Printed 12/13/19 5:07 PM

Table of Figures

Figure 3.1: System INteTfaceovuiiiiiiiiieiiee ettt 7
Figure 3.2: USET INEITACEeoviiiiiiiiiieieeet ettt ettt sttt et ae e 7
Figure 3.3: POWET BOAIAc.ooiiiiiiiieiecee ettt sttt s 7
FIGUIE 3.41 H-BIIAZE ..ottt ettt et sttt sae e b e 8
Figure 3.5: Black Line DEtECtOT.......cccuiiiiiiiiiiiiiiieiteet ettt sttt 8
Figure 3.6 Serial COMMUNICALIONco.uiruiiriieiiriienieete ettt ettt sttt sttt et st e b et e saeenaeenee e 9
Figure 4.1: Control Board (TOP)c.eeoueiiuienieeiieeie ettt ettt ettt ettt e ete e beessaeeseessbeenseesnneenseens 9
Figure 4.2: LCD SCREMALIC ...c..eiuviiiiiiiiieiiieieeect ettt sttt sttt sb et enees 10
Figure 4.3: Power Board SChematiCcouoviiiiiiiiiiiieieeeeee e 10
Figure 4.5: BUCK BOOSt CONVEITETc..eotiriiiiiiiiiiieieeiesit ettt ettt sttt e 11
Figure 4.4: Battery PaCK ...c..cooiiiiiiii et 11
Figure 4.6: Left Motor H-Bridge Schematic...........cccoooiiiiiiiiiiiiiiice e 12
Figure 4.7: Right Motor H-Bridge Schematicccccooiiiiiiiiiiiiiiceeee e 12
Figure 4.8: FUIl H-BIIAZEcovuiiiiiiiiiieieee ettt ettt et e 13
Figure 4.9: Left and Center Emitter SChematicccceviiiiiiiiiiiiieiiiieieeieeeee e 13
Figure 4.10 Right Side Emitter SChematiccocoviiiiiiiiiiiiinieeeeee e 14
Figure 4.11: Black Line Detector MOAUIEcocveviiiiiiiiiiiienicieeeee e 14
Figure 4.12: TOT MOGULLcoouiiiiiiieiecieet ettt sttt sttt sb e et enaes 15
Figure 5.1: Eneloop AA Batteries Discharge and Capacity Graphcocceeviiiiieniiniiieiienieeeee 16
Figure 6.1: Faulty Solder CONNECHIONcc.eovuiiiiiiiiiiieiieie ettt 17
Figure 6.2: Test Voltage of Battery Pack.........ccooiiiiiiiiiiiiiiiiceeee e 17
Figure 8.1: Main FIowchart (INOLAN)ccoeiuieriiiiiieiieeieeete ettt 20
Figure 8.2: Main Flowchart (BENNEtt)c.cooiiiiiiiiiiiiieiie ettt 21
Figure 8.3 Main FIOWCRATt (ALEC)ccviiriiieiieiie ettt ettt et e e et saae e 22
Figure 8.4 Main FIOWCRAIt (STEVEN)ccciiiiiiiiiiiiieie ettt ettt ettt et ebee s e e e snee e 23
Figure 8.5: POrts FIOWCHAIL.......coviiiiiiiiiiiieeee ettt e 24
Figure 8.6: Interrupts FIOWCHAITcc.oiiiiiiiiiiiiiie et 24
Figure 8.7: Timers FIOWCRATTcccooiuiiiiiiiiieieee et 25
Figure 8.8: Serial RX and TX FIOWCRAIT........cccoiiiiiiiiiiiiiiiiiiecee s 26
Figure 8.9 Display FIOWCRATTccooiiiiiiiiiiiiie et 27
Figure 8.10 Movements FIOWCRATT..........cooiiiiiiiiiiiiiieee e 27
Figure 8.11 AQ_processes FIOWCRATT...........coiiiiiiiiiiiiiie s 28
Figure 8.12 FOrward FIOWChAITcc.oiiiiiiiiiiiie et 28
Figure 8.13 Menu FIOWCRATT.coiiiiiiiiiiiicc et 29
Figure 8.14 Network Configuration FIOWChArtcccociiiiiiiiiiiiiiiiiieeeeee e 30
Figure 8.15 irconfig FIOWCRATTcoouiiiiiiiiiii et 31
Figure 8.16 switch processes FIOWCRhAItc.coiiiiiiiiiiiiiiieie e 32
This document contains information that is PRIVILEGED and Date: Document Number: Rev: Sheet:

CONFIDENTIAL; hereb ified that di inati
ot i informaton s sticty wranpio Y ST 05/01/2019 | 0-0000-000-0000-01 5D 5 of 73

Printed 12/13/19 5:07 PM

1. Scope

We are experiencing a changing world. Malls are closing down across America due to lack of foot
traffic business. Instagram influencers are making a living by promoting online clothing brands. The
number of online shoppers increases every year as trust and reliability increases within the prominent
platforms. Storefront locations are no longer the key to profitability. Now, the most efficient and
autonomous shipping centers and distribution centers are the companies who are the most profitable.

We have developed the silver bullet for these companies: introducing Transpato the autonomous car
solution for shipping centers. This robot was specifically engineered to thrive within warehouses. With
the simple addition of black lines on the warehouse floor, Transpato robots are able to accomplish
everything a human could do, but much faster. Transpato is also equipped with a top of the line IOT
module in which commands can be sent using serial communications between Transpato and the user
allowing for remote access to the movements and tasks it will perform. No more staffing headaches, no
more variability: only your company, Transpato, and cash flow. Transpato can move packages around
store houses by following the lines on the ground, distributing items faster and quicker than human
counterparts.

To accomplish all this, Transpato is equipped with modern computing hardware, robust infrared
emitter and detector sensors, highly-controllable motors, and a bright LCD display with an intuitive user
interface. All this and more packed in a sleek and translucent chassis to allow for minimal disturbance to
your existing business.

2. Abbreviations

Abbreviation Definition

LED Light Emitting Diode

LCD Liquid Crystal Display

SWI Power Switch

CpPU Central Processing Unit

N-FET N-Type Field Effect Transistor

JMP Wire Jumper

FRAM Ferroelectric Random Access Memory
ADC Analog to Digital Converter

ISR Interrupt Service Routine

PWM Pulse Width Modulation

TX Transmit

RX Receive

This document contains information that is PRIVILEGED and [Date: Document Number: Rev: Sheet:

CONFIDENTIAL; you are hereby notified that any dissemination
of this information is strictly prohibited. 05/01/2019 0-0000-000-0000-01 5D 6 of 73

Printed 12/13/19 5:07 PM

3. Overview

Listed below are the large systems inside of Transpato. The following sections will explain in detail,

these large systems.

User Interface

Serial Communications |10T

H-Bridge

Power Board

Black Line Detector

3.1. User Interface

Figure 3.1: System Interface

The user interface consists of a switch SW1 and two buttons S1 and S2. Battery power is supplied
across the LCD display once switch SW1 is turned into the on position. The buttons work as input for

the processor.

Buttons

Microcontroller

LEDs

LCD

3.2. Power Board

Figure 3.2: User Interface

The Power Board contains the Battery Input and the Processor Power Connectors. The Battery Input is
where the battery is connected to the board. The buck-boost converter is responsible for maintaining a
steady 5 V to be delivered to the MSP430. The Power Board converts the battery power into power that
is transferred through the Processor Power Connectors to the Processor.

Battery Input

Processor Power
Connectors

Conve

Buck Boost

rter

Figure 3.3: Po

wer Board

This document contains information that is PRIVILEGED and

CONFIDENTIAL; you are hereby notified that any dissemination

of this information is strictly prohibited.

Date:

05/01/2019

Document Number:

0-0000-000-0000-01

Rev:

5D

Sheet:

7 of 73

Printed 12/13/19 5:07 PM

3.3. H-Bridge

An H bridge is a fairly simply electronic circuit that switches the polarity of a voltage applied to a load.
The H-Bridge contains the MOSFETS, Left Motor Connector, and Right Motor Connector. The
MOSFETS allow the processor to control the direction of the Transpato. The Left and Right Motor
Connectors are where the Motors attach to the Transpato and supply power to them.

H-Bridge with

MOSFETS
Left Motor Right Motor
Connector Connector

Figure 3.4: H-Bridge
3.4. Black Line Detector

The emitter is an IR LED in which the left and right detector are angled inwards towards. The values
for the left and right detector are calibrated based upon the when on the line and off the line. The left
and right detector will then communicate with the motors to stay on the line.

Emitter

Left Detector Right Detector

Figure 3.5: Black Line Detector

3.5. Serial Communication

The Serial Communications IOT contains the IOT Connector which allows the IOT Module to interface
with the processor, the IOT Board which the IOT module attaches to, and the IOT Module itself which
deals with communication from the processor.

This document contains information that is PRIVILEGED and Date: Document Number: Rev: Sheet:
CONFIDENTIAL; you are hereby notified that any dissemination
of this information is strictly prohibited. 05/01/2019 0-0000-000-0000-01 5D 8of 73

Printed 12/13/19 5:07 PM

IOT Module

IOT Board IOT Connector

Figure 3.6 Serial Communication

4. Hardware

We are using the Texas Instruments MSP430FR2355 LaunchPad Development Kit, which is state-
of-the-art technology that includes everything needed to start developing on the MSP430FRx FRAM
microcontroller platform. The board has easy-to-use debugging features, 2 onboard buttons and 2 LEDs,
Grove sensor connectors, and an ambient light sensor.

4.1. User Interface

The first thing we did was break the board into the three separate pieces that make up the board. We
then ran the Control Board through the pick and place machines to include the correct resistors and
capacitors. Then we hand soldered the larger components onto the board: tantalum capacitor, an
inductor, a 5-pin integrated circuit, a switch, a potentiometer, multiple connectors, and a backlit LCD

display.
 Rx T J135
'. Il oo'(n)N
J&UOOID("O() \
ECE306 NCSU ‘
Figure 4.1: Control Board (Top)
This document contains information that is PRIVILEGED and Date: Document Number: Rev: Sheet:

CONFIDENTIAL; you are hereby notified that any dissemination
of this information is strictly prohibited. 05/01/2019 0-0000-000-0000-01 5D 9 of 73

Printed 12/13/19 5:07 PM

LCD _BACKLITE 1

4.2. Power Board

10.0K
0-0200-112-0400-00

10.0K
0-0200-112-0400-00

Figure 4.2: LCD Schematic

: 3
o3 o3
R51< 5: R52 <3¢
Q50 "’§ "’§'
2 2
Lo
G
'4'1 =
IJ [} sla mﬁl—a
ZXMNG6A09G ! ? LCD1
3
R50 5 UCBISIMO 16 |0
/\/\/ UCB1SOMI 15 | sop DOGS104-A
10.0K - UCBISCK 17) soi E E
0-0200-112-0400-00
ucstcsico 18 | o g-“_051 34_052
GND 19 1 sho §1!M’ §J.!M’
REseTico 20 | oo g el g e
12 4 1 e e
GND
—L—
PWR3_3
R53 R54
UCB1SIMO UCB1SCK

The vehicle is powered by a battery pack containing 4 AA batteries. The batteries are configured in
series. The batteries shown in the figures below are Eneloop cells manufactured by Panasonic. They
have a nominal voltage of 1.2 V and under full charge they sit at around ~1.4 volts.

% "E!
L1 24) K MRS:?
Jo T § [g
e ceanli § [X0
—® swi sj;
H § s
; :/c8
L 5 mzh e
=« >) § [coampo 1. C1 tlcs :lce
e %% Z S T ol £ o
R2 gg g |x g x5k
: c22 |, e w o
I L A -
0 § XSR 16v T 793500 R4%E§
s
3
J16 L
_'@ g
Figure 4.3: Power Board Schematic
This document contains information that is PRIVILEGED and Date: Document Number: Rev: Sheet:
CONFIDENTIAL; you are hereby notified that any dissemination
of this information is strictly prohibited. 05/01/2019 0-0000-000-0000-01 5D 10 of 73

Printed 12/13/19 5:07 PM

Figure 4.4: Battery Pack

4.3. H-Bridge

Figure 4.5: Buck Boost Converter

The Full H-Bridge was added in project 05 which gives control over the motors in forward and reverse.
We used nine N-type Mosfets and four P-type Mosfets. The N-type Mosfets were installed at device
locations Q1, Q11, Q12, Q21, Q22, Q31, Q32, Q41, Q42. The P-type Mosfets wer installed at location
Q10, Q20, Q30, and Q40. The H-bridge pcb is mounted right below the The H-bridge allows full
functionality and can move perform both forward and backwards movement.

This document contains information that is PRIVILEGED and
CONFIDENTIAL; you are hereby notified that any dissemination
of this information is strictly prohibited.

Date:

05/01/2019

Document Number:

0-0000-000-0000-01

Rev:

5D

Sheet:

11 of 73

Printed 12/13/19 5:07 PM

i

Left Motor H-Bridge

§ I :
R41£§§ Q43 INMPL Q33 -
H i e !
em—_— I:I’DJ --------------- Jas +L<t|:l‘unmm
TP5@ 7 g e
g i
& x9
R42§ Sé RS 2§ fé
H L woron rorwano. L woron evense g
e ‘@ TP8
Q41 Q31
= P
= = i
Q42 i pamay s
— o
i, o
R43 Ras
A% Ra3
L % % A~
JIM CARLSON r EC E306
Items in dashed boxes are specific to a Project. rouECT oo R

™ ECE306

H-BRIDGE LEFT SIDE

11 B ECE306

This document contains information that i PRIVILEGED and CONFIDENTIAL, you

T =
10 1|3 ®7

Figure 4.6: Left Motor H-Bridge Schematic

Right Motor H-Bridge

—o}

-
Rzé% Q23 éJMP-R Qi3 R1 ééé
it) B sty §
o r‘»li;-.—r 2 T—.—-ﬂihﬁrI m @ TP2
TP1@" ; ;
R22§§§ o E o R12§§§
TP3@: ' ' © TP4
Q21
d ; f L Q11
Q22 z-::lm’ :) imF:hJ_J Q12 |
il d, Frbr—
R23 R13
N\ A%
a8 %- %_ el

Items in dashed boxes are specific to a Project.

—= ECE306

North Carolina State University
- roseer [
~ ECE306

Left Detector / Center Emitter / Right Detector

1:1 r"’ |

=

ECE306

=
10 1|4c«7| 01
This document contains information that iz PRIVILEGED and CONFIDENTIAL, you

are prohi

Figure 4.7: Right Motor H-Bridge Schematic

This document contains information that is PRIVILEGED and
CONFIDENTIAL,; you are hereby notified that any dissemination
of this information is strictly prohibited.

Date:

05/01/2019

Document Number:

0-0000-000-0000-01

Rev:

5D

Sheet:
12 of 73

Printed 12/13/19 5:07 PM

4.4. Black Line Detector

Figure 4.8: Full H-Bridge

¥ Left Side Line Detect

R2

511K
0-0200-112-0368-00

IR_BRIGHTNESS

Low Pass Filter

R20

V_DETECT_L

PWR3 3b

R34< 3
R35

150-00

o

115+

.0

0-0200-112-

1.0K
0-0200-112-0300-00

N

0-0201-001-0105-00
fer
S
N
o

X5R

o Center Emitter

o—EKE I_g“g'H i
3 51' I_D‘.h 1 IR_LED

R36

VN

10.0K
—gp— 0-0200-112-0400-00

Figure 4.9: Left and Center Emitter Schematic

This document contains information that is PRIVILEGED and
CONFIDENTIAL,; you are hereby notified that any dissemination
of this information is strictly prohibited.

Document Number:

0-0000-000-0000-01

Date:

05/01/2019

Rev:

5D

Sheet:

13 of 73

Printed 12/13/19 5:07 PM

PWR3 3b

R1

5.11K
0-0200-112-0368-00

IR_BRIGHTNESS

Right Side Line Detect

Low Pass Filter

R10

V_DETECT R

1.0K
0-0200-112-0300-00 3

Figure 4.11: Black Line Detector Module

4.5. Serial Communications

Users communicate wirelessly with this robot using GainSpan’s low power Wi-Fi connectivity module.
With its own IP address, users can communicate with the robot from anywhere. This module is placed
on its” own PCB which is then fixed to the top of the LCD board so that it is properly connected to the
correct serial input/output ports. Being on the top of the robot also helps avoid antenna interference.

This document contains information that is PRIVILEGED and
CONFIDENTIAL; you are hereby notified that any dissemination
of this information is strictly prohibited.

Date:

05/01/2019

Document Number:

0-0000-000-0000-01

Rev:

5D

Sheet:

14 of 73

Printed 12/13/19 5:07 PM

1712 CN

-
—
-
o
-
-
—~
-
-

20FESEFD7964 [3)

W GSoMe 10 I
FCC 1D YOPGS2101MIP
IC 9154A GS210MIP

C €@ e

b =

Figure 4.12: IOT Module

5. Power Analysis

The following table shows the power consumption of the major components in the car. Using a volt-amp
meter the measured average current consumption is shown below.

Component Current
FRAM 7.9 mA 3.3V
LCD Backlight 68.1 mA 3.3V

Infrared Emitter 29.1 mA 3.3V
WiFi Module 145.1 mA 3.3V

Motors 210 mA 6V

Voltage Power

26.07 mW

224.73 mW

96.03 mW

478.83 mW

1260 mW

The power consumption is calculated using the formula Power = Voltage * Current. The car is designed
to operate at 3.3 V. The total power consumption of the car assuming that everything is running at once
is 2085 mW. In order to determine the exact amount of power drawn from the batteries we also need to
factor in the efficiency of conversion of the voltage regulator. We are using a voltage regulator to step
up the voltage delivered to the car to be 6 volts.
Using the spec sheet provided by the manufacturer for the voltage regulator we see that it is 90%
efficient. Applying the efficiency of conversion, we see that the batteries at full load see 2317 mW of

power draw.

This document contains information that is PRIVILEGED and
CONFIDENTIAL,; you are hereby notified that any dissemination
of this information is strictly prohibited.

Date:

05/01/2019

Document Number:

0-0000-000-0000-01

Rev:

5D

Sheet:

15 of 73

Printed 12/13/19 5:07 PM
The battery pack that we are using puts four AA batteries in series. The exact cell used in the car is the
Eneloop 1900mAh battery manufactured by Panasonic. Since there are a total of 4 batteries, each battery

provides a quarter of the power necessary.

Having 4 batteries multiplies the voltage by 4 but keeps the current constant.

Discharge, capacity scale: Eneloop AA BK-3MCCE 1900mAh (White)

1,50
1,45
1,40
1,35
1,30
1,25
1,201y
1,151
1,10
1,05

1,00

www. lygte-info.dk

Volt

M QS
0,95

0,90

0,00 0,25 0,50 0,75 1,00 75 2,00 2,25 2,50 2,75 3,00

A:0.1A B:0.1A — A:0.2A =— B:0.2A — A:0.5A — B:0.5A — A:1.0A — B:1.0A A:2,0A — B:2.0A A:3.0A — B:3.0A

- AS5.0A =— B:5.0A — A:7.0A — B:7.0A A:10.0A — B:10.0A

Figure 5.1: Eneloop AA Batteries Discharge and Capacity Graph

6. Test Process

The power board was the first piece of hardware to be tested after the construction of the control
board. The power board is designed to be able to output a constant 3.3v with a varying DC input. A
power supply and oscilloscope were set up in the lab to read the output. The power supply was setto 5 V
and .1A output and the positive probe was connected to the JO port and the negative probe was
connected to ground. The Oscilloscope was connected to J12 and ground and the reading was ~3.3v as
expected.

The power board and H-bridge were carefully inspected under a magnification lens to check for any
faulty solder joints. Faulty solder joints are hard to find because appear to have been set properly but
under magnification a hairline crack can be seen at the C7 capacitor, this can be seen in figure 6.1. For
this example, the component would have to have the solder reflowed.

After the Battery pack was connected the voltage was measured at port JO to ensure connectivity. A
multimeter was used, and the voltage displayed was 6.3 V. This is displayed in figure 6.2

This document contains information that is PRIVILEGED and Date: Document Number: Rev: Sheet:
CONFIDENTIAL; you are hereby notified that any dissemination
of this information is strictly prohibited. 05/01/2019 0-0000-000-0000-01 5D 16 of 73

Printed 12/13/19 5:07 PM

Figure 6.1: Faulty Solder Connection

Figure 6.2: Test Voltage of Battery Pack

The LCD and Backlight were tested by connecting the battery pack and turning the switch on.
The preloaded strings should be displayed on the LCD. Using the two interface buttons S1, and S2 the
user is able to toggle between the two different messages displayed on the LCD. The battery pack
connected to the display is seen in figure 6.3. The different displays the buttons can switch between are
shown in figures 6.3 and 6.4

6.1. Full H-Bridge

The assembly of the car involved attaching the H-bridge to control movement of the wheels. The H-
bridge was carefully inspected under the lab microscope to check for proper solder joints on all
components on the reflowed side.

2X10 Connectors are mounted to the back of the MSP430 to allow for connection to the H-Bridge
PCB. The H-bridge is soldered onto the connecters and then visually inspected to check for a solid
connection on each pin. N-FETS are installed at device designation Q21 and Q41 while jumpers are
installed at location JMP-R and JMP-L.

After the final assembly of the half H-bridge PCB the motors were connected and both forward
motors were initialized to output high in the project code. Testing of the H-Bridge is done by observing
the movement of the left and right motors.

6.2. Line Follow

The assembly of the car involved attaching the Line Detection Module. This consists of one Infrared
Line Emitter and two Infrared Line Detectors. These components had their continuity checked with a
multimeter to ensure strong and reliable connection. Furthermore, once this module was attached to the
car, the Infrared Line Emitter’s functionally was checked with a camera because infrared is undetectable
by the human eye.

Once attached, the car is hovered above the line and slowly moved back and forth across the black
line. This triggers the wheels to move. If the motors are not responding the way they should, the IR LED
values and/or PWM.

This document contains information that is PRIVILEGED and Date: Document Number: Rev: Sheet:
CONFIDENTIAL; you are hereby notified that any dissemination
of this information is strictly prohibited. 05/01/2019 0-0000-000-0000-01 5D 17 of 73

Printed 12/13/19 5:07 PM

6.3. Serial Communication

One of the major components to serial communication is making sure the receiver (Rx) and
transmitter (Tx) ports share the same baud rate. On our car, this is performed with a push of a switch.
Every time the “write” and “read” pointer does not match, the character that the “read” pointer is
pointing at is saved into an array and the array index is incremented. Often times, messages start with
the same ASCII character. This character is caught by our system, which resents the buffer array so that
the string is read in the correct order.

To test this, the receiver and transmitter functionalities are repeated tested and checked for accuracy
against multiple different valued signals.

7. Software
7.1. Main

As the name suggests, the “main” file utilizes all the code from the attached files to actually run the
system. Main is responsible for all the motor movements, display features, and on-board LED changes.

7.2. Ports

Ports are initialized at the beginning of the code. Throughout the process of running your program,
certain ports can be changed. These include the output of a port, changing the port from output to input
or vice versa, and changing a port from a GPIO to a function pin. There are six ports on our processor
and each port ranges from having five to eight pins. Port 1 contains the pins relating to using the ADC
and the red LED. Port 2 contains pins relating to the SW2. Port 3 contains pins controlling the small
SMCLK and the IOT Link. Port 4 contains pins used for SW1 and the LCD. Port 5 contains pins for
the IR_LED used with the ADC. Finally, port 6 contains the pins that control all of the motor functions,
as well as the LCD backlight and green LED. These are what the port pins are initialized to at the start
of the program, but as certain processes happen throughout the program the values of the pins can
change

7.3. Interrupts and ADC

An interrupt service routine is something that is executed in response to an interrupt signal that is
thrown by hardware. The sequencing for the interrupt begins with the trigger which is received from
hardware. It immediately stops running the main code and runs the interrupt service routine. Once the
ISR finished the MCU continues right back at the line of code that the interrupt was triggered at.

The below code shows the Interrupt Service routine that runs when a switch is pressed. The line
#pragma vector = PORT4 VECTOR tells the CPU to run the interrupt service routine that is stored at
the address defined by that macro. The following lines of code are the additional code that needs to be
run defined by us. For this specific example, we are telling it to check if the interrupt flag has been set to
high. If so, then switch debouncing will begin. We will enable the B1 timer which is an interrupt that
runs every 100 milliseconds. Within the B1 timer we will wait for 5 iterations which means that the
switch will not be able to receive any additional input during this time period. After the B1 interrupt
service routine is finished it will clear all the flags that were set to high in the switch ISR.

This document contains information that is PRIVILEGED and Date: Document Number: Rev: Sheet:
CONFIDENTIAL; you are hereby notified that any dissemination
of this information is strictly prohibited. 05/01/2019 0-0000-000-0000-01 5D 18 of 73

Printed 12/13/19 5:07 PM

7.4. Timers

To create a timer, you must first initialize and setup how often you want the timer to happen. When
initializing the timer, you must clear the control and index registers then select the clock you wish to
source. You must then select how you wish to read the clock cycle which may be leading edge, falling
edge, or continuous, and then you may divide the clock by setting the clock input divider and index
divider expansion registers. The goal of the input dividers is to reduce the clock cycle number to be
small enough so that we can set the interrupt interval as an integer value below 65535. After that, the
timer clear register must be set to 1 then you must set the interrupt interval. This is gotten by calculating
the clock over the input divider over the input divider expansion over 1 over the time wanted in seconds.
An example of this would be if the clock is SMCLK with value (8,000,000), the index divider is 2, the
index divider expansion is 8, and we want the timer to happen every 50 msec. This would get us
8,000,000/2/8/(1/.05))=25000. We would set the interrupt interval to 25000 to get a timer for 50
msec. Lastly, we must enable the interrupt to allow it to happen. Once it has been enabled, an interrupt
associated with the vector for the timer can be created where actions which one wants to perform by the
timer can occur.

7.5. Serial Communications

The first thing that must be done is to properly set up the pertinent ports. Once these are correctly
configured, the EUSCI_AO0 VECTOR and EUSCI_A1 VECTOR must be added to Interrupt Ports.c.
The important part of these interrupt is to store data coming in from UCA1RXBUF and UCAORXBUF
into a rotating buffer (resetting array). Once this is set up, the code must create a system that allows it to
properly read commands. The way we do this is by creating a “command character” such as “$” that
resets the array to index zero. Be resetting the array, we know the exact location of any commands that
follows this command character and can then set up reactions in our main() based off of each specific
following character.

This document contains information that is PRIVILEGED and Date: Document Number: Rev: Sheet:

CONFIDENTIAL; you are hereby notified that any dissemination
of this information is strictly prohibited. 05/01/2019 0-0000-000-0000-01 5D 19 of 73

Printed 12/13/19 5:07 PM

8. Flow Chart

The following is the flow chart for our code.

8.1. Main Blocks (Nolan)

Include linking files & Turn off motors when Enter function that turn on left motor &
declare variables —»| sensor detects black tumns off left motor & | _,,| keep right motor
line turns on right motor turned for one
when the the left second
y ¥ detector senses less
Call all of the white light than the v
initialization Wait a few seconds | right detector. The turn off all motors so
functions then reverse motor. reverse happens that the car ends in
when the left detector the middle of the
v v senses more white circle
light than the right
Set-up static display Turn off motors when detector
sensor detects black
line
v ¥
When the display
Calibrate White color.) 4 time reads 25
Wait a few seconds seconds. exit the

v then t;r:tgrn right function

Calibrate Black color .
turn off left motor and

v turn on right motor for—
Ready to run; turn one second
motors on with last —

button push.

Figure 8.1: Main Flowchart (Nolan)

This document contains information that is PRIVILEGED and Date: Document Number: Rev: Sheet:
CONFIDENTIAL; you are hereby notified that any dissemination
of this information is strictly prohibited. 05/01/2019 0-0000-000-0000-01 5D 20 of 73

Printed 12/13/19 5:07 PM

8.2. Main Blocks (Bennett)

Initializes global
variables and sets
up functions

!

Enters while loop
that continuously
loops

!

First run of main?

Yes?

Initialize 10T and run
setup process

No?

Function to determine

movements based upon

inputs from IOT

No?

IOT command function
done?

\ Yes?

Figure 8.2: Main Flowchart (Bennett)

This document contains information that is PRIVILEGED and Date:

CONFIDENTIAL; you are hereby notified that any dissemination
of this information is strictly prohibited.

05/01/2019

Document Number:

0-0000-000-0000-01

Rev:

5D

Sheet:

21 of 73

Printed 12/13/19 5:07 PM

8.3. Main Block (Alec)

Initialize all
functions and
variables

:

Start while loop
which always
runs

v

Run Function to
turn on/off LED’s
at specific times

v

If we detect there
is a change in
time, set time

change variables

on

v

Call functions for
switches, display,
menu, process
buffer, and
commands

Figure 8.3 Main Flowchart (Alec)

This document contains information that is PRIVILEGED and Date:
CONFIDENTIAL; you are hereby notified that any dissemination

of this information is strictly prohibited.

Document Number:

0-0000-000-0000-01

05/01/2019

Rev:

5D

Sheet:

22 of 73

Printed 12/13/19 5:07 PM

8.4. Main Blocks (Steven)

Initialize Hardware,
Timers, Settings,
Configurations, and
variables.

A

Wait half a second to
reset the IOT
module.

A

Set Forward and
Reverse motor speed
to off

Begin the While loop

Display Process

» Display Process

updates the LCD

updates the LCD

Run any commands
in the Queue

A

Menu function looks
for button presses on
SW1 and SW2 and
updates the screen

2

Parse incoming data
for commands and
the IP

If flagged
configure the
network

If flagged
Risplay the IP

If flagged
ove forwarg

If flagged

Turn left

If flagged
Turn Right

If flagged
Trace Blackline

Figure 8.4 Main Flowchart (Steven)

This document contains information that is PRIVILEGED and Date:

CONFIDENTIAL,; you are hereby notified that any dissemination

of this information is strictly prohibited.

05/01/2019

Document Number:

0-0000-000-0000-01

Rev: Sheet:

5D 23 of 73

Printed 12/13/19 5:07 PM

8.5. Ports

Power On

J

Ports 1-6
Initialized

Disable SW interrupt

for debounce

Debounce Done

J

SW1 or SW2
goes high and

Enable SW interrupt

Program
Finished?

Program Done

Figure 8.5: Ports Flowchart

8.6. Interrupts and ADC

Complete currently Content of the
.executi.ng interrupt vector is PC pops from the
instruction loaded onto the stack
program counter
Main code is 1
running
Program Counter
is pushed onto the Runs the contents
RS of the ISR
Interrupt trigger
occurs
The Service
l Routing is pushed Return from
onto the stack Interrupt Service
Routine
Processor does
hard wired
processing
The Interrupt with .)
: the highest priority Sl e
. pops from the
is selected
stack
L —— |
Figure 8.6: Interrupts Flowchart
This document contains information that is PRIVILEGED and Date: Document Number: Rev: Sheet:
CONFIDENTIAL; you are hereby notified that any dissemination
of this information is strictly prohibited. 05/01/2019 0-0000-000-0000-01 5D 24 of 73

Printed 12/13/19 5:07 PM

8.7. Timers

Clear Control and
Index Registers

'

Set Clock to
Source from

,

Set Clock Cycle
Read Type
(Leading, Falling,
or Continuous

Y
Divide Clock by
Input Divider and
Input Divider
Expansion
Register

y

Set Timer Clear
Register to 1 and
set Interrupt
Interval

!

Enable Timer

l

Create Interrupt
where Timer
Performs Actions

Figure 8.7: Timers Flowchart

This document contains information that is PRIVILEGED and
CONFIDENTIAL; you are hereby notified that any dissemination
of this information is strictly prohibited.

Date:

Document Number:

05/01/2019 | 0-0000-000-0000-01

Rev:

5D

Sheet:

25 of 73

Printed 12/13/19 5:07 PM

8.8. Serial RX and TX Processing

Initialize Serial
Interrupt for Rx

and Tx
Y
If Buffer index is Create Ring
greater than Buffer to store
Buffer Size, set Tx/Rx
index to zero Transmissions

/\

Tx Rx
i ‘,
For indexes 0-8
set UCA#TXBUF | | S€t YCA#RXBUF
equal to ring
equal to what to
buffer
output
' "
For index 9 set ncrement Buffer
UCA#TXBUF o
equal to O0x0D
' i
For index 10 set I;?;:grr|3]iix
UCA#TXBUF !
equal to Ox0A Buffer Size, set
i Index equal to O
v
Disable the Tx

Interrupt for other
transmissions

Figure 8.8: Serial RX and TX Flowchart

This document contains information that is PRIVILEGED and
CONFIDENTIAL; you are hereby notified that any dissemination

of this information is strictly prohibited.

Date:

05/01/2019

0-0000-000-0000-01

Document Number: Rev:

5D

Sheet:

26 of 73

Printed 12/13/19 5:07 PM

8.9. Display.c Flowchart

Receives variables
that controls display
contents

'

Changes the
contents of the
display to suit
variables

'

Has it been

display update Yes?

No?

Run function to

200msec since last [update display and

reset display timer

Return from function

8.10. Movements.c Flowchart

Figure 8.9 Display Flowchart

command

Action required
based upon

'

requested

Runs motion

Motion Done? o

{ Yes?

Stop Motion

Figure 8.10 Movements Flowchart

This document contains information that is PRIVILEGED and Date:

CONFIDENTIAL,; you are hereby notified that any dissemination
of this information is strictly prohibited. 05/01/2019

Document Number:

0-0000-000-0000-01

Rev:

5D

Sheet:

27 of 73

Printed 12/13/19 5:07 PM

8.11. AQ_processes.c

Check the Write 'fvtgl?;:ri:'ﬁ%ee"t
value and the Read —> « S0P
Read value into the
value
Buffer
: copy values into the
et 5o display lines
Figure 8.11 A0_processes Flowchart
8.12. Forward.c

function receives
forward command

increment and

circulate the buffer
array

restart the index of
the array if the

command prompting

character is received

Reverse turned OFF

Forward turned ON

forward timer reset

v

timer reaches one
second

Forward Command
turned OFF

Wheels turned OFF

Figure 8.12 Forward Flowchart

This document contains information that is PRIVILEGED and
CONFIDENTIAL,; you are hereby notified that any dissemination
of this information is strictly prohibited.

Date:

05/01/2019

Document Number:

0-0000-000-0000-01 5D

Rev: Sheet:

28 of 73

Printed 12/13/19 5:07 PM

8.13. menu.c
Look for Press on £ m
Button 1 Chosen
Calibrate L
10T Course Test Black line
Update the Screen y
with Menu Item
Connect
Save Black Line v
4
Value
v A Look for commands Intercept Black Line
Look for Press of '«
Button 2 .I_ Save White Line Run network config v +
Value
2 Execute Commands Trace Black Line
Run the Associated
function Display IP address
Figure 8.13 Menu Flowchart
This document contains information that is PRIVILEGED and Date: Document Number: Rev: Sheet:

CONFIDENTIAL; you are hereby notified that any dissemination
of this information is strictly prohibited. 05/01/2019 0-0000-000-0000-01 5D 29 of 73

Printed 12/13/19 5:07 PM

8.14. networkconfig.c

Get IP

Send command to

!

Parse the IP address

!

LCD

Display the IP on

!

prevent

Set Sync Interval to

disassociation event

!

6667

Configure Port to

Ping Google.com

!

Reset Flags

Y

End Function

Figure 8.14 Network Configuration Flowchart

This document contains information that is PRIVILEGED and
CONFIDENTIAL; you are hereby notified that any dissemination
of this information is strictly prohibited.

Date:

05/01/2019

Document Number:

0-0000-000-0000-01

Rev:

5D

Sheet:

30 of 73

Printed 12/13/19 5:07 PM

8.15. irconfig.c

Clear Averaging
Counting Index
and temp
average variable

i

Check if
Averaging
Counting Index is
>= to Sample
Count

False

A

Add current ADC
value to average
and then divide
by two

I

Increment
Averaging
Counting Index
and repeat
function

True

Completed
Averaging of

"| ADC Black/White

Values

Figure 8.15 irconfig Flowchart

This document contains information that is PRIVILEGED and Date:

CONFIDENTIAL; you are hereby notified that any dissemination

of this information is strictly prohibited.

05/01/2019

Document Number:

0-0000-000-0000-01

Rev:

5D

Sheet:

31of 73

Printed 12/13/19 5:07 PM

8.16. switches_proceses.c

9. Software Listing
9.1. Main.c (Nolan)

1

If either button is
not pressed,
debounce flag is
off

— —_—

If Left Button is

Pressed and

Debounce Off

If Right Button is
Pressed and
Debounce Off

Increment Menu
State Variable by

One

l

Function Variable

If Menu State

Variable Greater
than the Number
of Menu States,
Reset it to Zero

= =

This Variable is
Reset to Off in
Other Functions

Set Debounce
Flag to On

!
If Debounce Flag
is On, Wait a Set
Amount of Time
Before Setting
Debounce Flag
Off

Figure 8.16 switch_processes Flowchart

/I Description: This file contains the Main Routine - "While" Operating System
/I James Nolan Joyce

/I Feb 2018

//" Built with TAR Embedded Workbench Version: V4.10A/W32 (7.11.2)

1

#include "functions.h"
#include "msp430.h"
#include <string.h>
#include "macros.h"

// Global Variables

This document contains information that is PRIVILEGED and Date:

CONFIDENTIAL; you are hereby notified that any dissemination
of this information is strictly prohibited.

05/01/2019

Document Number:

0-0000-000-0000-01

Rev:

5D

Sheet:

32 of 73

Printed 12/13/19 5:07 PM

volatile char slow_input_down;
extern char display line[4][11];
extern char *display[4];
unsigned char display mode;

extern volatile unsigned char display changed;

extern volatile unsigned char update display;

extern volatile unsigned int update display count;

extern volatile unsigned int Time Sequence;

extern volatile char one_time;
unsigned int test_value;

char chosen_direction;

char change;

unsigned int Last Time Sequence;
unsigned int cycle time;

unsigned int time_change;
unsigned int event;

unsigned int IR led_ Status;

extern volatile unsigned int SWlclicked;
extern volatile unsigned int SW2clicked,;

extern unsigned int leftSW1 _ctr;

extern volatile unsigned int DETECT L;
extern volatile unsigned int DETECT R;
unsigned int temp_L;
unsigned int temp R;

unsigned int initial pivot;
extern unsigned int Display Time;

extern unsigned int Calibrate Black;
extern unsigned int Calibrate White;
unsigned int Switch2 Clicked;

extern unsigned char adc_char[FIVE];
extern unsigned int PlayDis;

extern volatile unsigned int SWlclicked;
extern volatile unsigned int SW1debounce;
debounced.

extern volatile unsigned int SW2clicked,;
extern volatile unsigned int SW2debounce;
debounced.

// Set a variable to identify the switch has been pressed.
// Set a variable to identify the switch has been pressed.

// Set a variable to identify the switch has been pressed.
// Set a variable to identify the switch is being

// Set a variable to identify the switch has been pressed.
// Set a variable to identify the switch is being

This document contains information that is PRIVILEGED and Date:

CONFIDENTIAL; you are hereby notified that any dissemination

Document Number:

of this information is strictly prohibited. 05/01/2019 0-0000-000-0000-01

Rev:

5D

Sheet:

33 of 73

Printed 12/13/19 5:07 PM

void main(void){
/1
// Main Program
// This is the main routine for the program. Execution of code starts here.
// ' The operating system is Back Ground Fore Ground.
/1
// Disable the GPIO power-on default high-impedance mode to activate
// previously configured port settings

PM5CTLO &= ~LOCKLPMS;

Init_Ports(); // Initialize Ports

Init_Clocks(); // Initialize Clock System

Init_Conditions(); // Initialize Variables and Initial Conditions
Init_Timers(); // Initialize Timers

Init LCD(); // Initialize LCD

Init. ADC();
// Place the contents of what you want on the display, in between the quotes
// Limited to 10 characters per line
display line[ONE][FIVE] ="T";
update string(display line[ONE], ONE);
display changed = ONE;
display line[TWO][FIVE] ="L";
update_string(display line[TWO], TWO);
display changed = ONE;
display line[THREE][FIVE] ="R";
update_string(display line[THREE], THREE);
display changed = ONE;

IR led Status = OFF;
initial pivot=1;
Switch2 Clicked = 0;
PlayDis = 0;

// P60UT |= R_FORWARD;
// P60UT |= L_ FORWARD;

// Begining of the "While" Operating System
/1
while(ALWAYS) { // Can the Operating system run
if(Last Time Sequence != Time Sequence){
Last Time Sequence = Time Sequence;
cycle time++;
time change = ONE;
}
[==l]==l]==11~=1==]]==1]--1]--1]
if(IR led Status){
display line[ZERO][SEVEN]="";
display line[ZERO][EIGHT] ="0";

This document contains information that is PRIVILEGED and Date: Document Number: Rev:

CONFIDENTIAL; you are hereby notified that any dissemination
of this information is strictly prohibited. 05/01/2019 0-0000-000-0000-01

5D

Sheet:

34 of 73

Printed 12/13/19 5:07 PM

display line[ZERO][NINE] ="'N";
update string(display line[ZERO], ZERO);
display changed = ONE;

}

else{
display line[ZERO][SEVEN] ='0';
display line[ZERO][EIGHT] ="F';
display line[ZERO][NINE] ="F";
update string(display line[ZERO], ZERO);
display changed = ONE;

}

/==I]==1]==1]==]==]]-=1]-~11--]]

if(PlayDis == 0){
display line[THREE][ZERO] ='C';
display line[THREE][ONE] ="a’;
display line[THREE][TWO]="l";
display line[THREE][THREE] ="'W";
display line[THREE][FOUR]="";
update_string(display line[THREE], THREE);
display changed = ONE;

}
if(PlayDis == 1){
display line[THREE][ZERO] ='C';
display line[THREE][ONE] ="a’;
display line[THREE][TWO]="l;
display line[THREE][THREE] = 'B';
display line[THREE][FOUR]="";
update string(display line[THREE], THREE);
display changed = ONE;
!
if(PlayDis == 2){
display line[THREE][ZERO] ='R’;
display line[THREE][ONE] ="¢';
display line[THREE][TWO] ="a';
display line[THREE][THREE] ="d';
display line[THREE][FOUR] ="y";
update_string(display line[THREE], THREE);
display changed = ONE;
}
if(PlayDis == 3){
display line[THREE][ZERO] ='R’;
display line[THREE][ONE] ="u';
display line[THREE][TWO] ="n';
display line[THREE][THREE] ="";
display line[THREE][FOUR]=")};
update string(display line[THREE], THREE);
display changed = ONE;

This document contains information that is PRIVILEGED and Date:
CONFIDENTIAL; you are hereby notified that any dissemination
of this information is strictly prohibited. 05/01/2019

Document Number:

0-0000-000-0000-01

Rev:

5D

Sheet:

35of 73

Printed 12/13/19 5:07 PM

b
H==~1]==11==11=-11--11--11-~11-1]

temp R =DETECT R;
temp L =DETECT L;

if(PlayDis == 3){
P60OUT =R FORWARD:;
P60OUT =L _FORWARD;
if (temp R > 100){
PlayDis++;
initial pivot++;
}
}
if (Display_Time >= 2){
switch(initial pivot){
case 1:
break;
case 2:
P60OUT &=~R FORWARD:;
P60OUT &=~L FORWARD;
if (Display_Time >= 6){ initial pivot++; }
break;
case 3:
P60OUT |=R_REVERSE;
P60OUT |=L_REVERSE;
if (temp_R > 100){ initial pivot++; }
break;
case 4:
P60OUT &=~R REVERSE;
P60OUT &= ~L REVERSE;
if (Display_Time >= 10){ initial pivot++; }
break;
case 3:
P60OUT |=R_FORWARD:;
if (Display_Time >= 11){ initial pivot++; }
break;
case 6:
if (temp L >temp R){
P60OUT &=~R FORWARD:;
P60OUT =L _FORWARD;
}
else if((temp_L <temp R)){
P60OUT =R FORWARD:;
P60OUT &=~L FORWARD;
}

else{
P60OUT |= R_FORWARD;

This document contains information that is PRIVILEGED and Date: Document Number: Rev: Sheet:

CONFIDENTIAL; you are hereby notified that any dissemination
of this information is strictly prohibited. 05/01/2019 0-0000-000-0000-01 5D 36 of 73

Printed 12/13/19 5:07 PM

P60OUT =L _FORWARD;
}
if(Display Time >= 22){ initial pivot++; }
break;
case 7:
P60OUT =R _FORWARD:;
P60OUT &=~L FORWARD;
if(Display Time >= 23){ initial pivot++; }
break;
case 8:
P60OUT =R _FORWARD:;
P60OUT =L _FORWARD;
if(Display Time >= 24){ initial pivot++; }
break;
case 9:
P60OUT &=~R FORWARD:;
P60OUT &=~L FORWARD;
P60OUT &=~R REVERSE;
P60OUT &= ~L REVERSE;
default:
break;

h
j
Display Process();

}

}
9.2. Main.c (Bennett)

#include "functions.h"
#include "msp430.h"
#include <string.h>
#include <macros.h>

// Global Variables

volatile char slow_input_down;

extern char display line[4][11];

extern char *display[4];

unsigned char display mode;

extern volatile unsigned char display changed;
extern volatile unsigned char update display;
extern volatile unsigned int update display count;
extern volatile unsigned int Time Sequence;
extern volatile char one_time;

unsigned int once = HIGH;
extern unsigned int read index;

extern unsigned int display IP;

This document contains information that is PRIVILEGED and Date:
CONFIDENTIAL; you are hereby notified that any dissemination
of this information is strictly prohibited. 05/01/2019

Document Number:

0-0000-000-0000-01

Rev:

5D

Sheet:

37 of 73

Printed 12/13/19 5:07 PM

void main(void){
/1
// Main Program

// This is the main routine for the program. Execution of code starts here.
// ' The operating system is Back Ground Fore Ground.

//
/1
// Disable the GPIO power-on default high-impedance mode to activate
// previously configured port settings

PMS5CTLO &= ~LOCKLPMS;

Init_Ports(); // Initialize Ports

Init_Clocks(); // Initialize Clock System

Init_Conditions(); // Initialize Variables and Initial Conditions
Init Timers(); // Initialize Timers

Init LCD(); // Initialize LCD

Init ADC(); // Initializes ADC

Init Serial UCAOQ();
Init Serial UCA1();

strepy(display_line[0], " ");
update_string(display_line[0], 0);
strepy(display line[1], " ");
update_string(display_line[1], 1);
strepy(display _line[2], " ");
update_string(display_line[2], 2);
strepy(display_line[3], " ");

update string(display_line[3], 3);
display changed = 1;
lcd_4line();

/1

// Beginning of the "While" Operating System

/1

while(ALWAYYS) { // Can the Operating system run

if(once == HIGH){

initial_setup();}
Display Process(); // Display update timer
Update_Display(); // Updates the display on timer (200msec)

if(once == LOW){
clears();
commands();
transmit_receive();

b
b

This document contains information that is PRIVILEGED and Date: Document Number: Rev:

CONFIDENTIAL; you are hereby notified that any dissemination
of this information is strictly prohibited. 05/01/2019 0-0000-000-0000-01

5D

Sheet:

38 of 73

Printed 12/13/19 5:07 PM

/1
b

9.3. Main.c (Alec)

Description: The Main function initializes all functions and their values then starts a while loop that
always runs. Inside of that while loop a function runs which turns the red and green LED lights on and
off, first turning on the green and off the red, then turning on the red and off the green, then turning both
LED’s on before turning both LED’s off. Also in the while loop, a function runs which detects if there
has been a change in time. If there has been, time change variables are turned on. Finally, the functions
for switches, display, menu, process buffer, and commands are called for.

// Function Prototypes

void main(void);

void Init Conditions(void);
void Init LEDs(void);
void Init ADC(void);

// Global Variables

volatile char slow_input_down;

extern char display line[DISPCOLUMN][DISPCHAR];
extern char *display[DISPCOLUMN];

unsigned char display mode;

extern volatile unsigned char display changed;
extern volatile unsigned char update display;
extern volatile unsigned int update display count;
volatile unsigned int Time Sequence;

extern unsigned int pindef;

volatile char one_time;

unsigned int test_value;

extern unsigned int cycle time = RESET STATE;
extern unsigned int time change = RESET STATE;
unsigned int time _motor = RESET STATE;
unsigned int time travel = RESET STATE;
extern char event = NONE;

unsigned int Old Time Sequence;

extern char state = END;

extern unsigned int ADC_Thumb;

extern unsigned int ADC Det L;

extern unsigned int ADC Det R;

extern volatile char IOT Char Rx[];

extern volatile unsigned int iot rx_ring wr;
extern unsigned int iot_rx_ring_rd;

extern volatile char USB_Char Rx[];

extern volatile unsigned int usb_rx_ring wr;
extern unsigned int usb_rx_ring rd;

This document contains information that is PRIVILEGED and Date: Document Number: Rev: Sheet:
CONFIDENTIAL; you are hereby notified that any dissemination
of this information is strictly prohibited. 05/01/2019 0-0000-000-0000-01 5D 39 of 73

Printed 12/13/19 5:07 PM

extern unsigned int RF_ PERCENT;
extern unsigned int LF PERCENT;

//Global HEX/BCD Values
unsigned int run_time = RESET STATE;

void main(void){

// Disable the GPIO power-on default high-impedance mode to activate
// previously configured port settings

PM5CTLO &= ~LOCKLPMS;

Init_Ports(); // Initialize Ports

Init_Clocks(); // Initialize Clock System

Init_Conditions(); // Initialize Variables and Initial Conditions
Init Timer BO(); // Initialize Timers

Init Timer B3();

Init LCD(); // Initialize LCD

Init ADC(); //Initialize ADC

Init Serial UCAOQ(); //nitialize Serial Port (115200 Baud default)

Init Serial UCA1();
// Place the contents of what you want on the display, in between the quotes
// Limited to 10 characters per line

/1

//

// Begining of the "While" Operating System

//

while(ALWAYYS) { // Can the Operating system run
switch(Time Sequence){
case TWOFIFTY MS: /

if(one time){
Init LEDs();
display changed = TURNON;
one time = RESET STATE;

}
Time Sequence = RESET STATE; /1
break;
case TWOHUNDRED_ MS: //
if(one time){
GREEN LED ON; // Change State of LED 5
one time = RESET STATE;
}
break;
case ONEFIFTY MS: //
if(one time){
RED LED ON; // Change State of LED 4
GREEN LED OFF; // Change State of LED 5
This document contains information that is PRIVILEGED and Date: Document Number: Rev: Sheet:

CONFIDENTIAL; you are hereby notified that any dissemination
of this information is strictly prohibited. 05/01/2019 0-0000-000-0000-01

5D

40 of 73

Printed 12/13/19 5:07 PM

one time = RESET STATE;
}
break;
case ONEHUNDRED MS: /
if(one time){
lcd_4line();
GREEN LED ON; // Change State of LED 5
display changed = TURNON;
one time = RESET STATE;
}
break;
case FIFTY MS: //
if(one time){
RED LED OFF; // Change State of LED 4
GREEN LED OFF; // Change State of LED 5
one time = RESET STATE;
}
break; /!
default: break;

}

if(Time Sequence != Old Time Sequence) //Time Sequence Changes every S0msec
{

cycle time++;

run_time++;

Old Time Sequence = Time Sequence;

time change = TURNON;

time_motor = TURNON;

time travel = TURNON;

}

Switches Process(); // Check for switch state change
Display Process();

Menu_Process();

Process Buffer Dump();

Command_Proccessing();

This document contains information that is PRIVILEGED and Date: Document Number: Rev: Sheet:

CONFIDENTIAL; you are hereby notified that any dissemination
of this information is strictly prohibited. 05/01/2019 0-0000-000-0000-01 5D 41 of 73

Printed 12/13/19 5:07 PM

9.4. Main.c (Steven)

Description: The main function in my code is responsible for initializing all the input/output pins,
timers, settings configurations and variables that are going to be using while my car is running. After it
is finished with these initializations it enters a while loop. My car runs off a foreground/background
operating system. This means that is continually runs through all the functions in main and services any
devices when necessary. There is a limitation to running functions like this Because the system might
get slow and then overall run times will take longer. This problem is solved with interrupt routines, the
interrupt routines handle the most urgent work by setting flags to request processing by the main loop.

/1
/1
/I Description: This file contains the Main Routine - "While" Operating System
/1

/1

//" Steven Yan

// Jan 2018

// Built with IAR Embedded Workbench Version: V4.10A/W32 (7.11.2)

/1

/]
#include "functions.h"
#include "msp430.h"
#include <string.h>
#include "macros.h"

// Function Prototypes

void main(void);

void Init Conditions(void);
void Init LEDs(void);

// Global Variables

volatile char slow_input_down;

extern char display line[DISPLAYFOUR][DISPLAYCOLUMNS];
extern char *display[DISPLAYFOUR];

unsigned char display mode;

extern volatile unsigned char display changed;
extern volatile unsigned char update display;
extern volatile unsigned int update display count;
volatile unsigned int Time Sequence;

volatile char one_time;

unsigned int test_value;

char chosen_direction;

char change;

char event;

This document contains information that is PRIVILEGED and Date: Document Number: Rev:
CONFIDENTIAL; you are hereby notified that any dissemination
of this information is strictly prohibited. 05/01/2019 0-0000-000-0000-01 5D

Sheet:

42 of 73

Printed 12/13/19 5:07 PM

volatile unsigned int cycle time;
volatile unsigned int ADC_Thumb;
volatile unsigned int V_detect r;
volatile unsigned int V_detect I;

char buttonOne;
char buttonTwo;

//variables to handle switch debouncing
unsigned int debouncer = RESET STATE;
char debounce TF = RESET STATE,;
unsigned int menu_item;

char adc_char[5];
//project 7 variables

volatile unsigned int ones;

volatile unsigned int tens;

volatile unsigned int hundreds;

volatile unsigned int milliseconds;

unsigned int first time;

unsigned int timer_enable = RESET STATE,;

char lineEvent;

char currentState;

unsigned int blackLine;
unsigned int whiteSpace;
unsigned int displayValues;
unsigned int displayToggle;
unsigned int batteryFull;

//homework 8 variables

unsigned int UCAQ_index;
unsigned int baudl = BR115;
unsigned int mctlwl = UCFX115;
unsigned int baud2;

char * outputstring = "NCSU #1";
char * getIP = "AT+NSTAT=7\n";
extern unsigned int ipsearchstate;
unsigned int forwardCommand;
unsigned int reverseCommand;
unsigned int leftCommand,
unsigned int rightCommand;
unsigned char IOTcourse ="'0";
unsigned int nwflag;

This document contains information that is PRIVILEGED and Date:
CONFIDENTIAL; you are hereby notified that any dissemination
of this information is strictly prohibited. 05/01/2019

Document Number:

0-0000-000-0000-01

Rev:

5D

Sheet:

43 of 73

Printed 12/13/19 5:07 PM

unsigned int broadcastcommand;
char startlOTflag;

char startblackline;

/1
// Main Program

// This is the main routine for the program. Execution of code starts here.
// ' The operating system is Back Ground Fore Ground.

/1
/1
// Disable the GPIO power-on default high-impedance mode to activate
// previously configured port settings

void main(void){

PMS5CTLO &= ~LOCKLPMS;

Init Ports(USE_GPIO); // Initialize Ports

Init_Clocks(); // Initialize Clock System

Init_Conditions(); // Initialize Variables and Initial Conditions
Init_Timers(); // Initialize Timers

Init LCD(); // Initialize LCD

Init ADC(); //Initialize ADC

Init Serial UCAO(BR115, UCFX115);

Init Serial UCA1(BR115, UCFX115);

cycle time = RESET STATE;

while(cycle time < 10);

P5SOUT |=10T RESET; //set the IOT module

//turn off all motors

RIGHT FORWARD SPEED = WHEEL OFF;

LEFT FORWARD_ SPEED = WHEEL OFF;

RIGHT REVERSE SPEED = WHEEL OFF;

LEFT REVERSE SPEED = WHEEL OFF;

/- PSOUT |=IR_LED; //Start the IR LED On

/I P60OUT |- LCD_BACKLITE; //Start the LCD backlight on

//ipsearchstate = 1;

//
// Begining of the "While" Operating System
//
while(ALWAYYS) {
Display Process(); //initialize display update stuff
/I if('batteryFull) { splashScreen(); } //load the splash screen first
// if(batteryFull) { menu(); } //load the menu
menu(); //load the menu
This document contains information that is PRIVILEGED and Date: Document Number: Rev: Sheet:

CONFIDENTIAL; you are hereby notified that any dissemination
of this information is strictly prohibited. 05/01/2019 0-0000-000-0000-01 5D

44 of 73

Printed 12/13/19 5:07 PM

if(broadcastcommand) { networkconfig(); } //parse for the IP and set port

blacklinedetection(); //State machine to follow black line
if(broadcastcommand) { showIP(); } //display the IP on the LCD
processInput(); //parse the incoming data for commands
executeCommand(); //run commands received from PC

if (startlOTflag) { 10Tscreen(); } //IOT course screen

if (forwardCommand) { forward 2secs(); } //drive forward

else if(reverseCommand) { backwards 1sec(); } //move backwards
else if(leftCommand) { turn_left45(); } //turn the car left

else if(rightCommand) { turn_right90(); } //turn the car right

}
}
9.5. Ports.c
/1
// File Name : ports.c
/1
// Description: This file contains functions for initializing and defining each
/l individual port pin of the MSP430 and a function to call the port
/l initializations individually.
/1
// Bennett James
// Jan 2018

// Built with IAR Embedded Workbench Version: V4.10A/W32 (7.11.2)
/]
#include "functions.h"
#include "msp430.h"
#include <string.h>
#include <macros.h>

void Init Ports(void){
/1
//Call functions for initializing port pins

Init_Port1();
Init_Port2();
Init_Port3();
Init_Port4();
Init_Port5();
Init_Port6();
//
}
void Init Portl(void){
//
//Configure PORT 1, PINS 0-7

This document contains information that is PRIVILEGED and Date: Document Number:
CONFIDENTIAL; you are hereby notified that any dissemination
of this information is strictly prohibited. 05/01/2019 0-0000-000-0000-01

Rev:

5D

Sheet:

45 of 73

Printed 12/13/19 5:07 PM

PI1DIR = OxFF;
P10OUT = 0x00;

PI1SELO &=~RED LED;
PISEL1 &=~RED LED;
PIDIR |= RED LED;
P1OUT |= RED LED;

PISELO |= Al _SEEED;
PISELI |= Al _SEEED;

PISELO |= V_DETECT L;
PISELI |= V_DETECT L;

PISELO |= V_DETECT R;
PISEL] |= V_DETECT R;

PISELO |= A4 SEEED;
PISELI |= A4 SEEED;

PISELO |= V_THUMB;
PISELI |= V_THUMB;

PISELO |= UCAOTXD;
P1SEL1 &=~UCAO0TXD;

PISELO |= UCAORXD;
P1SEL1 &= ~UCAORXD;

/l
b

void Init Port2(void){
/1

//Configure PORT 2. PINS 0-7

P2DIR = O0xFF; // Set P2 direction to output
P20UT = 0x00; // P2 set Low

P2SELO &= ~P2 0; // P2_0 GPIO operation
P2SEL1 &=~P2 0;// P2_0 GPIO operation
P2DIR &= ~P2_0; // Direction = input

P2SELO &=~P2 1;// P2 _1 GPIO operation
P2SELI &=~P2 1;// P2 1 GPIO operation
P2DIR &= ~P2_1; // Direction = input

This document contains information that is PRIVILEGED and Date:
CONFIDENTIAL; you are hereby notified that any dissemination
of this information is strictly prohibited. 05/01/2019

Document Number:

0-0000-000-0000-01

Rev:

5D

Sheet:

46 of 73

Printed 12/13/19 5:07 PM

P2SELO &= ~P2 2;// P2 2 GPIO operation
P2SELI &=~P2 2;// P2 2 GPIO operation
P2DIR &= ~P2_2;// Direction = input

P2SELO &= ~SW2; // SW2 Operation
P2SEL1 &= ~SW2; // SW2 Operation
P2DIR &= ~SW?2; // Direction = input

P2PUD |= SW2; // Configure pullup resistor
P2REN |= SW2; // Enable pullup resistor

P2IES |= SW2; // P2.0 Hi/Lo edge interrupt
P2IFG &= ~SW2; // Clear all P2.6 interrupt flags
P2IE |= SW2; // P2.6 interrupt enabled

P2SELO &= ~P2 4;// P2_4 GPIO operation
P2SELI &=~P2 4;// P2 4 GPIO operation
P2DIR &= ~P2_4; // Direction = input

P2SELO &= ~P2_5;// P2_5 GPIO operation
P2SEL1 &=~P2_5;// P2_5 GPIO operation
P2DIR &= ~P2_5; // Direction = input

P2SELO &= ~LFXOUT; // LFEXOUT Clock operation
P2SELI |= LFEXOUT; // LFXOUT Clock operation

P2SELO &= ~LFXIN; // LEXIN Clock operation
P2SELI |= LFXIN; // LFXIN Clock operation
/1

}

void Init Port3(void){
//
//Configure PORT 3, PINS 0-7

P3SELO = 0x00;

P3SEL1 = 0x00;

P3DIR = 0x00; // Set P1 direction to output
P30OUT = 0x00; // P1 set Low

P3SELO &=~TEST PROBE;
P3SEL1 &=~TEST PROBE;
P3DIR |= TEST PROBE;

P30UT &=~TEST PROBE;

P3SELO |= OA20;
P3SEL1 |= OA20;

This document contains information that is PRIVILEGED and Date: Document Number:
CONFIDENTIAL; you are hereby notified that any dissemination
of this information is strictly prohibited. 05/01/2019 0-0000-000-0000-01

Rev:

5D

Sheet:

47 of 73

Printed 12/13/19 5:07 PM

P3SELO |= OA2N;
P3SEL1 |= OA2N;

P3SELO |= OA2P;
P3SELI |= OA2P;

// Makes SMCLK_OUT a functon

P3SELO |= SMCLK_OUT; // Select 0 equals 1
P3SEL1 &=~SMCLK OUT; // Select 1 equals 0
P3DIR |= SMCLK OUT; // Direction set to output

P3SELO |= OA30;
P3SELI |= OA30;

P3SELO |= OA2N;
P3SEL1 |= OA2N;

P3SELO &= ~IOT LINK;
P3SEL1 &= ~IOT LINK;
P3DIR &=~IOT LINK;

P3SELO &= ~P3_7;
P3SEL1 &= ~P3_7;
P3DIR &=~P3 7;

Il
b

void Init Port4(void){
//
/I Configure PORT 4, PINS 0-7

P4DIR = OxFF; // Set P1 direction to output

P40OUT = 0x00; // P1 set Low

P4SELO &= ~RESET LCD;// RESET LCD GPIO operation
P4SEL1 &=~RESET LCD;//RESET LCD GPIO operation
P4DIR |= RESET LCD; // Set RESET LCD direction to output
P4OUT |= RESET LCD; // Set RESET LCD Off [High]
P4SELO &=~SW1; // SW1 GPIO operation

P4SEL1 &=~SW1; // SW1 GPIO operation

P4DIR &= ~SW1; // Direction = input

P4PUD |= SW1; // Configure pullup resistor

P4REN |= SW1; // Enable pullup resistor

P4IES |= SW1; // P2.0 Hi/Lo edge interrupt

P4IFG &=~SW1; // Clear all P2.6 interrupt flags

P4IE |= SW1; // P2.6 interrupt enabled

This document contains information that is PRIVILEGED and Date: Document Number:

CONFIDENTIAL; you are hereby notified that any dissemination
of this information is strictly prohibited. 05/01/2019 0-0000-000-0000-01

Rev:

5D

Sheet:

48 of 73

Printed 12/13/19 5:07 PM

P4SELO |= UCA1TXD; // USCI_A1 UART operation

P4SEL1 &=~UCA1TXD; // USCI_A1l UART operation

P4SELO |= UCAIRXD; // USCI_A1 UART operation

P4SEL1 &= ~UCA1RXD; // USCI_A1 UART operation

P4SELO &=~UCB1_CS LCD;//UCB1_CS _LCD GPIO operation
P4SELI &=~UCB1_CS LCD;//UCB1_CS _LCD GPIO operation
P4DIR |= UCB1_CS LCD; // Set SPI CS_LCD direction to output
P40OUT |=UCB1_CS_LCD; // Set SPI_CS_LCD Off [High]
P4SELO |= UCB1CLK; // UCBICLK SPI BUS operation

P4SEL1 &= ~UCBICLK; // UCBICLK SPI BUS operation
P4SELO |= UCB1SIMO; // UCB1SIMO SPI BUS operation
P4SELI1 &= ~UCBISIMO; // UCB1SIMO SPI BUS operation
P4SELO |= UCB1SOMI; // UCB1SOMI SPI BUS operation
P4SEL1 &= ~UCB1SOMI; // UCB1SOMI SPI BUS operation

//

}

void Init Port5(void){
//
// Configure PORT 5, PINS 0-4

P5DIR = O0xFF; // Set P1 direction to output
P50UT = 0x00; // P1 set Low

P5SELO |= IOT RESET;
P5SELI |= IOT RESET;

P5SSELO |=P5_1;
PSSELI |=P5_1;

P5SELO |= IOT PROG_SEL;
P5SELI |= 10T PROG _SEL;

P5SELO |= IOT PROG_MODE;
P5SELI |=IOT PROG MODE;

P5SELO &= ~IR_LED;
P5SSEL1 &=~IR_LED;
P5SDIR |= IR_LED;
P50UT |=IR_LED;

/I
}

void Init_Port6(void){
//
/I Configure PORT 6, PINS 0-7

This document contains information that is PRIVILEGED and Date: Document Number:

CONFIDENTIAL; you are hereby notified that any dissemination
of this information is strictly prohibited. 05/01/2019 0-0000-000-0000-01

Rev:

5D

Sheet:

49 of 73

Printed 12/13/19 5:07 PM

P6DIR = OxFF; // Set P1 direction to output
P60OUT = 0x00; // P1 set Low

P6SELO |= R_ FORWARD;
P6SEL1 &=~R_FORWARD;
P6DIR |= R_FORWARD;

P6SELO |= L FORWARD;
P6SEL1 &=~L FORWARD;
P6DIR |= L FORWARD;

P6SELO |= R_REVERSE;
P6SEL1 &=~R_REVERSE;
P6DIR |- R_REVERSE;

P6SELO |= L REVERSE;
P6SEL1 &=~L REVERSE;
P6DIR |= L REVERSE;

P6SELO &=~LCD BACKLITE;
P6SEL1 &=~LCD BACKLITE;
P6DIR |= LCD BACKLITE;
P60UT |= LCD BACKLITE;

P6SELO &= ~P6_5;
P6SEL1 &= ~P6_5;
P6DIR &=~P6 _5;

P6SELO &= ~GRN_LED;
P6SEL1 &= ~GRN_LED;
P6DIR |= GRN_LED;

P60UT &= ~GRN_LED;

/l
b

9.6. Interrupt.c
/1

1

/I Description: This file contains the interrupt vector definitions for switch
// debouncing. SW1 and SW2 are sent to the ISR definitions in timers.c

// Added the state machine for ADC.
//

// Steven Yan

// Feb 2019

// Built with AR Embedded Workbench Version: V4.10A/W32 (7.12.1)

This document contains information that is PRIVILEGED and Date:
CONFIDENTIAL; you are hereby notified that any dissemination

of this information is strictly prohibited. 05/01/2019

Document Number:

0-0000-000-0000-01

Rev:

5D

Sheet:

50 of 73

Printed 12/13/19 5:07 PM

1

#include "functions.h"
#include "msp430.h"
#include "macros.h"
#include <string.h>

extern char display line[DISPLAYFOUR][DISPLAYCOLUMNS];
extern char *display[DISPLAYFOUR];

extern volatile unsigned char display changed;
volatile unsigned int debounce count;

extern volatile char debounceSW1_TF;

extern volatile char debounceSW2_TF;

extern char buttonOne;

extern char buttonTwo;

extern unsigned int channel;

extern volatile unsigned int ADC_Thumb;
extern volatile unsigned int V_detect r;

extern volatile unsigned int V_detect 1,

#pragma vector = PORT4 VECTOR //debouncing switch 1
__interrupt void switchOne_interrupt(void) {

if(P4IFG & SW1) { //if the bit for SW1 is flagged
debounceSW1_TF = TRUE; //indicate that the switch has been pressed
buttonOne = TRUE; //set global variable high for use in other functions
P4IE &= ~SW1; //disable the switch interrupt enable
TBOCCTLI |= CCIE; //enable the switch timer
}
}

#pragma vector = PORT2 VECTOR
__interrupt void switchTwo_interrupt(void) {
if(P2IFG & SW2) {

debounceSW1_ TF = TRUE; //start debouncing

buttonTwo = TRUE; //set the global variable high

TBOCCTLI |= CCIE; //enable the switch timer

P2IE &= ~SW2; //disable the switch interrupt enable
}

}

#pragma vector=ADC_ VECTOR

__interrupt void ADC_ISR(void){
switch(__even_in_range(ADCIV,ADCIV_ADCIFG)){
case ADCIV_NONE:

This document contains information that is PRIVILEGED and Date: Document Number: Rev:
CONFIDENTIAL; you are hereby notified that any dissemination
of this information is strictly prohibited. 05/01/2019 0-0000-000-0000-01 5D

Sheet:

51 of 73

Printed 12/13/19 5:07 PM

break;
case ADCIV_ADCOVIFG: // When a conversion result is written to the ADCMEMO
// before its previous conversion result was read.
break;
case ADCIV_ADCTOVIFG: // ADC conversion-time overflow
break;
case ADCIV_ADCHIIFG: / Window comparator interrupt flags
break;
case ADCIV_ADCLOIFG: / Window comparator interrupt flag
break;
case ADCIV_ADCINIFG: / Window comparator interrupt flag
break;
case ADCIV_ADCIFG: // ADCMEMO memory register with the conversion result
ADCCTLO &= ~ADCENC;
switch(channel++) {
case THUMB:
ADC_Thumb = ADCMEMO; //save conversion result in mem register
ADCMCTLO &= ~ADCINCH_5; //turn off V_thumb
ADCMCTLO |= ADCINCH_2; //L._detector
break;

case L DET:
V_detect 1= ADCMEMO; //save conversion result in mem register
ADCMCTLO &=~ADCINCH_2; //turn off L _detector
ADCMCTLO |= ADCINCH_3; //R_detector
break;

case R DET:
V_detect r= ADCMEMO; //save conversion result in mem register
ADCMCTLO &= ~ADCINCH_3; //turn off R_detect
ADCMCTLO |= ADCINCH_5; //V_thumb
channel = THUMB; //reset case to thumbwheel
break;

}

ADCCTLO |= ADCENC:; //ADC enable conversion

ADCCTLO |= ADCSC; // Start next sample

break;

default:
break;

b
b

unsigned int channel;
void Init ADC(void){

1

This document contains information that is PRIVILEGED and Date: Document Number: Rev:
CONFIDENTIAL; you are hereby notified that any dissemination
of this information is strictly prohibited. 05/01/2019 0-0000-000-0000-01 5D

Sheet:

52 of 73

Printed 12/13/19 5:07 PM

//'V_DETECT L (0x04) // Pin 2 A2

//'V_DETECT R (0x08)// Pin 3 A3

//'V_THUMB (0x20) / Pin 5 A5

//

/I ADCCTLO Register

ADCCTLO = RESET STATE; // Reset

ADCCTLO |= ADCSHT 2;// 16 ADC clocks

ADCCTLO |= ADCMSC; // MSC

ADCCTLO |= ADCON; // ADC ON

// ADCCTL1 Register

ADCCTL2 = RESET STATE; // Reset

ADCCTLI |= ADCSHS 0;// 00b = ADCSC bit

ADCCTLI |= ADCSHP; // ADC sample-and-hold SAMPCON signal from sampling timer.

ADCCTLI1 &= ~ADCISSH; // ADC invert signal sample-and-hold.

ADCCTLI |= ADCDIV _0; /I ADC clock divider - 000b = Divide by 1

ADCCTLI |= ADCSSEL 0; /I ADC clock MODCLK

ADCCTLI1 |= ADCCONSEQ 0; // ADC conversion sequence 00b = Single-channel single-
conversion

/I ADCCTL1 & ADCBUSY identifies a conversion is in process

// ADCCTL2 Register

ADCCTL2 = RESET STATE; // Reset

ADCCTL2 |= ADCPDIVO0; // ADC pre-divider 00b = Pre-divide by 1

ADCCTL2 |= ADCRES 2;// ADC resolution 10b = 12 bit (14 clock cycle conversion time)

ADCCTL2 &= ~ADCDF; // ADC data read-back format Ob = Binary unsigned.

ADCCTL2 &= ~ADCSR; // ADC sampling rate Ob = ADC buffer supports up to 200 ksps

// ADCMCTLO Register

ADCMCTLO |= ADCSREF 0;// VREF - 000b = {VR+=AVCC and VR—-=AVSS }

ADCMCTLO |= ADCINCH_5; // V_.THUMB (0x20) Pin 5 A5

ADCIE |= ADCIEQ; // Enable ADC conv complete interrupt

ADCCTLO |= ADCENC:; // ADC enable conversion.

ADCCTLO |= ADCSC; // ADC start conversion.

9.7. Timers.c
void Init Timer BO(void)

{

TBOCTL = RESET REGISTER; // Clear TBO Control Register
TBOEXO0 =RESET REGISTER; // Clear TBIDEX Register
TBOCTL |= TBSSEL SMCLK; // SMCLK source
TBOCTL |= MC__ CONTINOUS; // Continuous up to OxFFFF and overflow
TBOCTL =1ID__ 2; // Divide clock by 2
TBOEXO |= TBIDEX _8; // Divide clock by an additional 8
TBOCTL |= TBCLR; // Resets TBOR,
// Capture Compare 0

This document contains information that is PRIVILEGED and Date: Document Number: Rev: Sheet:

CONFIDENTIAL; hereb ified that di inati
ot i informaton s sticty wranpio Y ST 05/01/2019 | 0-0000-000-0000-01 5D 53 of 73

Printed 12/13/19 5:07 PM

// #pragma vector = TIMERO B0 VECTOR

// Capture Compare 0
TBOCCRO = TBOCCRO INTERVAL; // CCRO, Interrupt happens every 50 msec
TBOCCTLO |= CCIE; // CCRO enable interrupt

/I Capture Compare 1,2, Overflow
// #pragma vector = TIMERO B1 VECTOR

// Capture compare 1

TBOCCRI1 = TBOCCR1 _INTERVAL; //CCR1 NOTE: THIS VALUE IS NOT IMPLEMENTED
CORRECTLY AT PRESENT

TBOCCTLI1 &= ~CCIE; // CCR1 enable interrupt

// Capture compare 2
TBOCCR2 = TBOCCR2 INTERVAL; // CCR2 NOTE: THIS VALUE IS NOT IMPLEMENTED
CORRECTLY AT PRESENT

TBOCCTL2 &= ~CCIE; // CCR2 enable interrupt

/I Overflow

TBOCTL &= ~TBIE; // Disable Overflow Interrupt

TBOCTL &= ~TBIFG; // Clear Overflow Interrupt flag
h

9.8. Serial_Com.c

Description: This file below contains the interrupts for both ports UCAO and UCA1. When values are
received in the UCAOQ or UCAL, they are stored within the array USB_Char Rx array from here they are
acted upon within main and once the transmit interrupt is pulled for either UCAO or UCA1 the data is

transmitted out of the respective pins.
//

#include "functions.h"
#include "msp430.h"
#include <string.h>
#include <macros.h>

extern volatile unsigned int usb_rx_ring wr;

extern volatile unsigned int usb_rx_ring rd;

extern volatile char USB_Char Rx[SMALL RING_SIZE];
extern volatile unsigned int usb_tx_ring wr;

extern volatile unsigned int usb_tx_ring rd;

extern volatile char USB_Char Tx[SMALL RING SIZE];
char test command[16];

unsigned int UCAQ_index;

unsigned int UCA1_index;

/1

This document contains information that is PRIVILEGED and Date: Document Number: Rev: Sheet:
CONFIDENTIAL; you are hereby notified that any dissemination
of this information is strictly prohibited. 05/01/2019 0-0000-000-0000-01 5D 54 of 73

Printed 12/13/19 5:07 PM

#pragma vector=EUSCI_AO0 VECTOR
__interrupt void eUSCI_AO0 ISR(void){
unsigned int temp;
switch(__even_in_range(UCAOIV,0x08)){
case 0: / Vector 0 - no interrupt
break;
case 2: // Vector 2 — RXIFG
// code for Receive
temp = usb_rx_ring wr++;
USB_Char Rx[temp] = UCAORXBUF; // RX -> USB_Char Rx character

if (usb_rx_ring wr >= (sizeof(USB_Char Rx))){
usb_rx_ring wr = BEGINNING:; // Circular buffer back to beginning
}
break;
case 4: // Vector 4 — TXIFG
/I Code for Transmit
switch(UCAO_index++){
case 0: //
case 1://
case 2: //
case 3://
case 4: //
case 5://
case 6: //
case 7://
case 8: //
UCAOTXBUF = test command[UCAO _index];
break;
case 9: //
UCAOTXBUF = 0x0D;
break;
case 10: // Vector 0 - no interrupt
UCAOTXBUF = 0x0A;
break;
default:
UCAOIE &= ~UCTXIE; // Disable TX interrupt
break;
}
break;
default: break;

}

;
/I

/1
#pragma vector=EUSCI A1 VECTOR

This document contains information that is PRIVILEGED and Date: Document Number: Rev:

CONFIDENTIAL; you are hereby notified that any dissemination
of this information is strictly prohibited. 05/01/2019 0-0000-000-0000-01

5D

Sheet:

S55of 73

Printed 12/13/19 5:07 PM

__interrupt void eUSCI_A1 ISR(void){
unsigned int temp;
switch(__even_in_range(UCA1IV,0x08)){
case 0: / Vector 0 - no interrupt
break;
case 2: // Vector 2 — RXIFG
// code for Receive
temp = usb_rx_ring wr++;
USB_Char Rx[temp] = UCA1RXBUF; // RX -> USB_Char Rx character

if (usb_rx_ring wr >= (sizeof(USB_Char Rx))){
usb_rx_ring wr = BEGINNING:; // Circular buffer back to beginning
}
break;
case 4: // Vector 4 — TXIFG
// Code for Transmit
switch(UCA1 index++){
case 0: //
case 1://
case 2: //
case 3://
case 4: //
case 5://
case 6: //
case 7://
case 8: //
UCAITXBUF = test command[UCA1_index];
break;
case 9: //
UCA1TXBUF = 0x0D;
break;
case 10: // Vector 0 - no interrupt
UCA1TXBUF = 0x0A;
break;
default:
UCAI1IE &= ~UCTXIE; // Disable TX interrupt
break;
}
break;
default: break;

}

j
/I

Description

This document contains information that is PRIVILEGED and Date: Document Number: Rev:

CONFIDENTIAL; you are hereby notified that any dissemination
of this information is strictly prohibited. 05/01/2019 0-0000-000-0000-01

5D

Sheet:

56 of 73

Printed 12/13/19 5:07 PM

This file contains the initialization of the serial communication ports UCAO and UCA1. Both of these
ports are initialized to have a baud rate of 460,800. Once these functions have been performed serial
communication receiving and transmitting with either UCAO or UCA1 can be performed.

//
void Init_Serial UCAO(void){
nt 1;
for(i=0; i< LARGE_RING_SIZE; i++){
USB_Char Rx[i] = 0x00; / USB Rx Buffer
}
usb_rx_ring wr = BEGINNING;
usb_rx_ring rd = BEGINNING;

for(i=0; i < SMALL RING_ SIZE; i++){ // May not use this
USB_Char Tx[i] = 0x00; / USB Tx Buffer
}

usb_tx ring wr = BEGINNING;

usb_tx ring rd = BEGINNING;

/I Configure UART 0

UCAOCTLWO = 0; // Use word register

UCAOCTLWO |= UCSWRST; // Set Software reset enable
UCAOCTLWO |= UCSSEL__ SMCLK; // Set SMCLK as fBRCLK

UCAOBRW = 1; // 460,800 Baud
UCAOMCTLW = 0x4911 ;

UCAOCTLWO &=~ UCSWRST; // Set Software reset enable
UCAOIE |= UCRXIE; // Enable RX interrupt

}

void Init_Serial UCA1(void){
nt i;
for(i=0; i< LARGE_RING_SIZE; i++){
USB_Char Rx[i] = 0x00; / USB Rx Buffer
}
usb_rx_ring wr = BEGINNING;
usb_rx_ring rd = BEGINNING;

for(i=0; i <SMALL RING_ SIZE; i++){ // May not use this
USB_Char Tx[i] = 0x00; / USB Tx Buffer
}

usb_tx ring wr = BEGINNING;

usb_tx ring rd = BEGINNING;

/I Configure UART 0

UCAI1CTLWO = 0; // Use word register

UCAICTLWO |= UCSWRST; // Set Software reset enable

This document contains information that is PRIVILEGED and Date: Document Number:
CONFIDENTIAL; you are hereby notified that any dissemination
of this information is strictly prohibited. 05/01/2019 0-0000-000-0000-01

Rev:

5D

Sheet:

57 of 73

Printed 12/13/19 5:07 PM

UCAICTLWO |= UCSSEL _ SMCLK; // Set SMCLK as fBRCLK

UCA1BRW = 1; // 460,800 Baud
UCAIMCTLW = 0x4911 ;

UCA1CTLWO &=~ UCSWRST; // Set Software reset enable
UCAIIE |= UCRXIE; // Enable RX interrupt

}

9.9. Display.c

/
Description: This function runs the display of my device. Flags are raised and positions are changed
throughout the running of my main function some of these changes are reflected on to what the display
shows. The display is updated every 200 millisecs.

/

unsigned char state;

extern char display line[4][11];

extern char *display[4];

extern unsigned char display mode;

extern volatile unsigned char display changed;
extern volatile unsigned char update display;

extern unsigned int timer count;
extern unsigned int timer update;
unsigned char position;

unsigned int movement_type;
unsigned int display type;
unsigned int position_type;

extern char IP_address1[THREE];
extern char IP_address2[THREE];
extern char IP_address3[THREE];
extern char IP_address4| THREE];

void Update Display(){

strepy(display_line[POS0], " ");
update string(display_line[POS0], ZERO);
strepy(display_line[POS1], " ");
update_string(display line[POS1], ONE);
strepy(display line[POS2], " ");
update_string(display line[POS2], TWO);
strepy(display_line[POS3], " ");

update string(display line[POS3], THREE);

display line[POS1][POS1] =1IP_address1[POSO0];

This document contains information that is PRIVILEGED and Date: Document Number: Rev: Sheet:
CONFIDENTIAL; you are hereby notified that any dissemination
of this information is strictly prohibited. 05/01/2019 0-0000-000-0000-01 5D 58 of 73

Printed 12/13/19 5:07 PM

display line[POS1][POS2] =1IP_address1[POS1];
display line[POS1][POS3] =1IP_address1[POS2];

display line[POS1][POS5] =1IP_address2[POSO0];
display line[POS1][POS6] =IP_address2[POS1];
display line[POS1][POS7] =IP_address2[POS2];

display line[POS2][POS1] =1IP_address3[POSO0];
display line[POS2][POS2] =IP_address3[POS1];
display line[POS2][POS3] =IP_address3[POS2];

display line[POS2][POS5] =IP_address4[POSO0];
display line[POS2][POS6] =IP_address4[POS1];
display line[POS2][POS7] =IP_address4[POS2];

switch(display type){
case IP:
strecpy(display_line[POSO0], "Wait4Input");
update string(display_line[POS0], ZERO);
break;
case MOVEMENT:
switch(movement type){
case FORWARD:
strepy(display _line[POS0], " Forward ");
update string(display_line[POS0], ZERO);
break;
case BACKWARD:
strepy(display line[POSO0], " Backward ");
update_string(display_line[POS0], ZERO);
break;
case LEFT 45:
strepy(display line[POSO0], " Left 45 ");
update string(display_line[POS0], ZERO);
break;
case LEFT 90:
strepy(display line[POSO0], " Left 90 ");
update_string(display_line[POS0], ZERO);
break;
case RIGHT 45:
strepy(display line[POSO0], " Right 45 ");
update string(display_line[POS0], ZERO);
break;
case RIGHT 90:
strepy(display line[POSO0], " Right 90 ");
update_string(display_line[POS0], ZERO);
break;
case BL START:

This document contains information that is PRIVILEGED and Date: Document Number: Rev: Sheet:
CONFIDENTIAL; you are hereby notified that any dissemination
of this information is strictly prohibited. 05/01/2019 0-0000-000-0000-01 5D 59 of 73

Printed 12/13/19 5:07 PM

strcpy(display line[POSO0], " BL Start ");
update string(display_line[POS0], ZERO);
break;

case BL TURN:
strepy(display line[POSO0], "Intercept ");
update string(display_line[POS0], ZERO);
break;

case BL TRAVEL:
strepy(display line[POSO0], "BL Travel ");
update_string(display_line[POS0], ZERO);
break;

case BL CIRCLE:
strepy(display line[POSO0], "BL Circle ");
update string(display_line[POS0], ZERO);
break;

case BL EXIT:
strepy(display line[POSO0], " BL Exit ");
update string(display_line[POS0], ZERO);
break;

case BL STOP:
strepy(display line[POSO], " BL Stop ");
update_string(display_line[POS0], ZERO);
break;

}

break;

case POSITION:

led_4line();

switch(position_type){

case POSITION 1:
strepy(display line[POS0], "Position 1");
update_string(display_line[POS0], ZERO);
break;

case POSITION_ 2:
strepy(display line[POS0], "Position 2");
update string(display_line[POS0], ZERO);
break;

case POSITION_3:
strepy(display _line[POS0], "Position 3");
update_string(display_line[POS0], ZERO);
break;

case POSITION 4:
strepy(display line[POS0], "Position 4");
update string(display_line[POS0], ZERO);
break;

case POSITION 5:
strepy(display line[POS0], "Position 5");
update_string(display_line[POS0], ZERO);

This document contains information that is PRIVILEGED and Date:
CONFIDENTIAL; you are hereby notified that any dissemination
of this information is strictly prohibited.

05/01/2019

Document Number:

0-0000-000-0000-01

Rev:

5D

Sheet:

60 of 73

Printed 12/13/19 5:07 PM

break;

case POSITION_6:
strepy(display line[POS0], "Position 6");
update string(display_line[POS0], ZERO);
break;

case POSITION 7:
strepy(display _line[POS0], "Position 7");
update_string(display_line[POS0], ZERO);
break;

case POSITION_8&:
strepy(display line[POS0], "Position 8");
update string(display_line[POS0], ZERO);
break;

}
break;

case WAITING:
strepy(display line[POSO0], " Waiting ");
update string(display_line[POS0], ZERO);
break;

}

Display Time(); // Displays run time on screen

if(timer_count >= DISPLAY UPDATE WAIT){ // Update display every half sec or 500 msec
update display = ONE;
timer count = RESET;
timer update = RESET;

}

else{
timer update = 1;
display changed = 1;

}

}

9.10. Movements.c

1

Description: This function controls all the movements for my vehicle. These functions are referenced
throughout my code based upon the input gathered from my IOT. The main movement commands I
used were forward, reverse, clockwise spin, and counterclockwise spin.

#include "functions.h"
#include "msp430.h"
#include <string.h>
#include <macros.h>

void Run_Forward(void){
TB3CCTL1 = OUTMOD 7;
TB3CCTL2 = OUTMOD 7;

This document contains information that is PRIVILEGED and Date: Document Number: Rev: Sheet:
CONFIDENTIAL; you are hereby notified that any dissemination
of this information is strictly prohibited. 05/01/2019 0-0000-000-0000-01 5D 61 of 73

Printed 12/13/19 5:07 PM

TB3CCTL3 = OUTMOD 7;
TB3CCTL4 = OUTMOD 7;

RIGHT FORWARD SPEED = WHEEL OFF; // P6.0 Right Forward PWM OFF
RIGHT FORWARD SPEED = RIGHT FORWARD AMOUNT; // P6.0 Right Forward PWM ON
amount

LEFT FORWARD_ SPEED = WHEEL OFF; // P6.1 Left Forward PWM OFF
LEFT FORWARD_SPEED =LEFT FORWARD AMOUNT; // P6.1 Left Forward PWM ON
amount

RIGHT REVERSE SPEED = WHEEL OFF; // P6.2 Right Reverse PWM OFF
RIGHT REVERSE SPEED = [DESIRED ON AMOUNT]; // P6.2 Right Reverse PWM ON amount

LEFT REVERSE SPEED = WHEEL OFF; // P6.3 Left Reverse PWM OFF
LEFT REVERSE SPEED = [DESIRED ON AMOUNTY; // P6.3 Left Reverse PWM ON amount

}

void Run_Reverse(void){
TB3CCTL1 = OUTMOD 7;
TB3CCTL2 = OUTMOD 7;
TB3CCTL3 = OUTMOD 7,
TB3CCTL4 = OUTMOD 7;

RIGHT FORWARD SPEED = WHEEL OFF; // P6.0 Right Forward PWM OFF
LEFT FORWARD_ SPEED = WHEEL OFF; // P6.1 Left Forward PWM OFF

RIGHT REVERSE SPEED = WHEEL OFF; // P6.2 Right Reverse PWM OFF
RIGHT REVERSE SPEED = RIGHT REVERSE AMOUNT; // P6.2 Right Reverse PWM ON
amount

LEFT REVERSE SPEED = WHEEL OFF; // P6.3 Left Reverse PWM OFF
LEFT REVERSE SPEED =LEFT REVERSE AMOUNT; // P6.3 Left Reverse PWM ON amount

}

void Run_SpinCW(void){
TB3CCTL1 = OUTMOD 7;
TB3CCTL2 = OUTMOD 7;
TB3CCTL3 = OUTMOD 7,
TB3CCTL4 = OUTMOD 7;

RIGHT FORWARD SPEED = WHEEL OFF; // P6.0 Right Forward PWM OFF

LEFT FORWARD_ SPEED = WHEEL OFF; // P6.1 Left Forward PWM OFF
LEFT FORWARD_ SPEED =LEFT SPIN CW_AMOUNT; // P6.1 Left Forward PWM ON amount

This document contains information that is PRIVILEGED and Date: Document Number: Rev: Sheet:
CONFIDENTIAL; you are hereby notified that any dissemination
of this information is strictly prohibited. 05/01/2019 0-0000-000-0000-01 5D 62 of 73

Printed 12/13/19 5:07 PM

RIGHT REVERSE SPEED = WHEEL OFF; // P6.2 Right Reverse PWM OFF
RIGHT REVERSE SPEED =RIGHT SPIN CW_AMOUNT; // P6.2 Right Reverse PWM ON
amount

LEFT REVERSE SPEED = WHEEL OFF; // P6.3 Left Reverse PWM OFF
b

void Run_SpinCCW(void){
TB3CCTL1 = OUTMOD 7;
TB3CCTL2 = OUTMOD 7;
TB3CCTL3 = OUTMOD 7,
TB3CCTL4 = OUTMOD 7;

RIGHT FORWARD SPEED = WHEEL OFF; // P6.0 Right Forward PWM OFF
RIGHT FORWARD SPEED = RIGHT SPIN CCW_AMOUNT ; // P6.0 Right Forward PWM ON
amount

LEFT FORWARD_ SPEED = WHEEL OFF; // P6.1 Left Forward PWM OFF
RIGHT REVERSE SPEED = WHEEL OFF; // P6.2 Right Reverse PWM OFF

LEFT REVERSE SPEED = WHEEL OFF; // P6.3 Left Reverse PWM OFF
LEFT REVERSE SPEED = LEFT SPIN CCW_AMOUNT ; // P6.3 Left Reverse PWM ON amount

}

void Run_Pause(void){
TB3CCTL1 = OUTMOD 7;
TB3CCTL2 = OUTMOD 7;
TB3CCTL3 = OUTMOD 7,
TB3CCTL4 = OUTMOD 7;

RIGHT FORWARD SPEED = WHEEL OFF; // P6.0 Right Forward PWM OFF
LEFT FORWARD_ SPEED = WHEEL OFF; // P6.1 Left Forward PWM OFF
RIGHT REVERSE SPEED = WHEEL OFF; // P6.2 Right Reverse PWM OFF
LEFT REVERSE SPEED = WHEEL OFF; // P6.3 Left Reverse PWM OFF

9.11. AQ_processes.c

Description:

This function takes in the data coming from the UC A0 Rx Buffer and iterates over an array to
hold the data sequentially as it comes into the device. When the A0 pin receives the character © * °, the
array is set to zero. This is useful because the first 10 indexes of the array are displayed on the third line
of the LCD display. Furthermore, it allows you to always know which index the following commands
will be.

This document contains information that is PRIVILEGED and Date: Document Number: Rev: Sheet:

CONFIDENTIAL; hereb ified that di inati
ot i informaton s sticty wranpio Y ST 05/01/2019 | 0-0000-000-0000-01 5D 63 of 73

Printed 12/13/19 5:07 PM

void AO_processes(void){
unsigned int snapshotwr AO=usb_rx ring wr AO0;
while(usb_rx_ring rd AO != snapshotwr A0){
if(USB_Char Rx AO[usb rx ring rd AO]==""){
UCAOQ_index = ZERO;
}
A0 _ProcessBuffer[UCAO index] = USB_Char Rx AO[usb_rx ring rd AO];
TransRec = TWO;
UCAOQ_index++;
usb_rx _ring rd AO0++;
display line[TWO][ZERO] = A0 _ProcessBuffer[ZERO];
display line[TWO][ONE]= A0 ProcessBuffer[ONE];
display line[TWO][TWO]= A0 ProcessBuffer[TWO];
display line[TWO][THREE] = A0_ProcessBuffer[THREE];
display line[TWO][FOUR] = A0 ProcessBuffer[FOUR];
display line[TWO][FIVE] = A0 ProcessBuffer[FIVE];
display line[TWO][SIX]= AO_ProcessBuffer[SIX];
display line[TWO][SEVEN] = A0_ProcessBuffer[SEVEN];
display line[TWO][EIGHT] = AO_ProcessBuffer[EIGHT];
display line[TWO][NINE] = AO_ProcessBuffer[NINE];
update string(display_line[TWO], TWO);
display changed = ONE;
if(UCAOQ_index >= (sizeof(A0_ProcessBuffer))){
UCAO index = ZERO;
}
if (usb_rx_ring rd A0 >= (sizeof(USB_Char Rx A0))){
usb_rx_ring rd A0 = ZERO; //Circulate buffer to beginning
}
}

}
9.12. Forward.c

Description:

This one of the primary functions of the robot. This function reads the input command. Once it
receives the “F” command, standing for “forward”, the function ensures that the wheels’ reverse
functionality is turned off, and the forward functionality is set to 100% speed using pulse width
modulation, and that the Forward Timer gets reset to zero. Once this timer reaches 1 second, the
function deletes the “F” command and turns off all of the wheels.
void Forward(void){

if(AO_ProcessBuffer[1] == "F"){
ForwardTimer = 0;
RIGHT REVERSE SPEED = WHEEL_ OFF;
LEFT REVERSE SPEED = WHEEL OFF;
RIGHT FORWARD_SPEED = 40000;
LEFT FORWARD_ SPEED = 40000;
if(Initial == 0){

ForwardTimer = 0;

This document contains information that is PRIVILEGED and Date: Document Number: Rev: Sheet:
CONFIDENTIAL; you are hereby notified that any dissemination
of this information is strictly prohibited. 05/01/2019 0-0000-000-0000-01 5D 64 of 73

Printed 12/13/19 5:07 PM

Initial = 1;
}

ForwardCommandSent = 1;

}

if((ForwardTimer >= 1) && (ForwardCommandSent == 1)){

AO ProcessBuffer[1] ="~";

RIGHT FORWARD SPEED = WHEEL OFF;
LEFT FORWARD SPEED = WHEEL OFF;
RIGHT REVERSE SPEED = WHEEL OFF;
LEFT REVERSE SPEED = WHEEL OFF;

AO ProcessBuffer[1] ="~";

Initial = 0;
ForwardCommandSent = 0;
}
}
9.13. menu.c

Description: The menu function in my domain works by polling for button presses on switch one. After
it receives a button press it increments a variable called menu_iitem and enters a switch statement that
prints the corresponding menu item onto the screen. The user has the option to choose calibrate values,
network configuration, IOT course, or test black line. When the user decides on the option that they
want, the code will flag a variable allowing the sub function to run. Pressing the second button will
select the onscreen option. The calibrate screen displays the ADC values for the left and right detector.

Pressing button two again will save the onscreen values to be used for the black line trace.

Selecting star IOT will update the display with relevant information the car will immediately begin
processing input from the PC and opening the TCP client on the computer will allow you to send
commands to your car. Just Porsche in the car will specifically look for the secret key followed by the
forward reverse right or left commands these will be directly translated into motion for the car. At the
top of the display the car will show the corresponding IOT pad that it has arrived at on the next two lines
it will show the IP address on the final line it will show the current receive command. After successful
navigation of the IOT course pressing the black line command key will begin the black line intercept.

One extra command that I put on my menu was black line test this allowed me to test my black line
function without actually connecting my IOT module I found this extremely helpful during the testing
portion of my car because I did not need to configure the network settings each time I needed to test.

1

1

// If button one is pressed. Update the menu screen. Check for overflow and if

// so then reset menu item. The menu function just sets flags to true so that

// other functions will start to run.
//
//

1

This document contains information that is PRIVILEGED and
CONFIDENTIAL; you are hereby notified that any dissemination
of this information is strictly prohibited.

Date:

05/01/2019

Document Number:

0-0000-000-0000-01

Rev:

5D

Sheet:

65 of 73

Printed 12/13/19 5:07 PM
void menu() {

if(buttonOne) {
++menu_item;
menuprint = TRUE;

// Clear Display

displayLine(DISPLAYTHREE," " LEFTALIGN);
displayLine(DISPLAYONE," " LEFTALIGN);
displayLine(DISPLAYTHREE," " LEFTALIGN);
displayLine(DISPLAYTWO," " LEFTALIGN);
displayLine(DISPLAYTHREE," " LEFTALIGN);

buttonOne = RESET STATE;
//reset the menu if overflow
if(menu_item > BLACKLINETESTOVERFLOW) { menu item = RESET STATE; }

}

switch(menu_item) {
case CALIBRATE:

if(menuprint) {
displayLine(DISPLAYZERO," CALIBRATE",LEFTALIGN); //print text
menuprint = FALSE;

}

detectorValues();

break;

case CONNECT:
if(menuprint) {
displayLine(DISPLAYZERO," NETWORK ",LEFTALIGN); //print text
menuprint = FALSE;

}
break;

case IOTCOURSE:
if(menuprint) {
displayLine(DISPLAYZERO,"START IOT ",LEFTALIGN); //print text
menuprint = FALSE;
}
break;
case BLACKLINETRACE:
if(menuprint) {
displayLine(DISPLAYZERO," BLACKLINE", LEFTALIGN); //print text
menuprint = FALSE;
}
break;
default: break;

}

This document contains information that is PRIVILEGED and Date: Document Number: Rev:
CONFIDENTIAL; you are hereby notified that any dissemination
of this information is strictly prohibited. 05/01/2019 0-0000-000-0000-01 5D

Sheet:

66 of 73

Printed 12/13/19 5:07 PM

unsigned int tmpl = V_detect r;
unsigned int tmp2 = V_detect I,

// if(Time_Sequence >= TOGGLEPERIOD) {
// - displayValues = RESET STATE;
/I displayToggle = RESET STATE;

// displayLine(DISPLAYTWO," ".LEFTALIGN);

// displayLine(DISPLAYTHREE," ".LEFTALIGN);
/- P60OUT &=~LCD_BACKLITE;

I}

if(buttonTwo) {
Time Sequence = RESET STATE;
buttonTwo = FALSE;
switch(menu_item) {
case CALIBRATE:
displayLine(DISPLAYZERO,"-CALIBRATE",LEFTALIGN); //print text

if(blackLine) {
blackLine = (tmp1 + tmp2) >> DIVIDE; //save value for black
displayLine(DISPLAYTHREE,"B:",LEFTALIGN); //print text
displayLine(DISPLAYTHREE,HEXtoBCD(blackLine),SHIFTTWO); //print text

}

else {
whiteSpace = (tmp1 + tmp2) >> DIVIDE; //save whitespace value
displayLine(DISPLAYTHREE,"W:",LEFTALIGN); //print text
displayLine(DISPLAYTHREE,HEXtoBCD(whiteSpace),SHIFTTWO); //print text

}
break;

case CONNECT:
broadcastcommand = TRUE; // set flag to true
break;

case IOTCOURSE:

displayLine(DISPLAYZERO," WAITING ", LEFTALIGN); //print waiting to start
startlOTflag = TRUE; //set flag to true

break;

case BLACKLINETRACE:
displayLine(DISPLAYZERO," BL START ", LEFTALIGN); //print to screen
interception = BLACKLINETEST; //start tracing black line

This document contains information that is PRIVILEGED and Date: Document Number: Rev:
CONFIDENTIAL; you are hereby notified that any dissemination
of this information is strictly prohibited. 05/01/2019 0-0000-000-0000-01 5D

Sheet:

67 of 73

Printed 12/13/19 5:07 PM

cycle time = RESET STATE; //Reset Timer
break;

default: break;

b
b
b

9.14. networkconfig.c

Description: The Network configuration gets the IP address that the IOT module sends to the FRAM
when a connection is established. The FRAM will then send three back to back commands setting up the
port number, syncinterval, and ping google.

void networkconfig(void) {
switch(broadcastcommand) {

case PARSEIP:
if(!commandsent) {
TX stringO(getlP); //parse the IP
commandsent = TRUE;
}
if(cycle_time > COMMANDTIME) {
broadcastcommand = SYNCSTATE; //move to next state
cycle time = RESET STATE;

commandsent = RESET STATE;

§
break;

case SYNCINTERVAL:
if(!commandsent) {
TX string0("AT+WSYNCINTRL=65535\n"); //set syncinterval
commandsent = TRUE;
J
if(cycle time > COMMANDTIME) { //if over wait time
broadcastcommand = PORTSTATE; //move to next state
cycle time = RESET STATE;
commandsent = RESET STATE;
}
break;
case PORTCONFIG:
if(!commandsent) {
TX string0("AT+NSTCP=6667,1\n"); //command to set port to 6667
commandsent = TRUE;
}
if(cycle time > WAITFORCONFIG) { //if over wait time
broadcastcommand = PINGSTATE; //move to next state

This document contains information that is PRIVILEGED and Date: Document Number: Rev: Sheet:

CONFIDENTIAL; you are hereby notified that any dissemination
of this information is strictly prohibited. 05/01/2019 0-0000-000-0000-01 5D 68 of 73

Printed 12/13/19 5:07 PM

cycle time = RESET STATE;
commandsent = RESET STATE;
}

break;

case PINGGOOGLE:

if(!commandsent) {

TX string0("AT+PING=google.com,3\n"); //command to ping google
commandsent = TRUE;

}

if(cycle time > COMMANDTIME) { //if over wait time
broadcastcommand = FALSE; //move to next state
cycle time = RESET STATE;
commandsent = RESET STATE;

}
break;

default: break;

b
b

9.15. irconfig.c

Description: This function contains the functions which average the values for a white IR value and a
black IR value. Both of these functions work the exact same, however one saves its value for a white
line value and the other saves its value for a black line value. To get this average, while our amount of
samples is lower than the desired amount already set, we continually add the current ADC left/right
value to its respective left/right value, then divide by two. Our amount of samples index is increased by
one after this is done then this function is repeated again. Once this has finished, there will be a left and
right average value for the respective black or white value.

extern char display line[DISPCOLUMN][DISPCHAR];

extern unsigned int ADC Det L;
extern unsigned int ADC Det R;
extern char state;

unsigned int IR_Ambient L = RESET REGISTER;
unsigned int IR_Ambient R = RESET REGISTER;
unsigned int IR_White L = RESET REGISTER;
unsigned int IR_White R = RESET REGISTER;
unsigned int IR_Black L = RESET REGISTER;
unsigned int IR Black R =RESET REGISTER;
unsigned int average = RESET REGISTER;
unsigned int Avg Count = RESET REGISTER;

This document contains information that is PRIVILEGED and Date: Document Number: Rev: Sheet:

CONFIDENTIAL; you are hereby notified that any dissemination
of this information is strictly prohibited. 05/01/2019 0-0000-000-0000-01 5D 69 of 73

Printed 12/13/19 5:07 PM

//This function takes an average reading of both IR sensors when the IR LED is on and over white
void white ir config(void)
{
P5OUT |=IR_LED;
JrExxxRNIUUST TURN ON IR LED BEFORE CALLING THIS

Avg Count=RESET REGISTER; //Reset any previous count
average = RESET REGISTER;
while(Avg Count <IR DETECTION SAMPLE RATE) //While our average count is

lower than our set sample rate, average both detectors then add them to the current average of white
varaible.

{
if(Avg_Count = RESET REGISTER)

{
IR White L =(IR_White L + ADC Det L)/ HALF AVG;
IR White R =(IR_White R + ADC Det R)/HALF AVG;
Avg Countt++;

}

else

{
IR White L =ADC Det L; //Set the default white variable to the first

average so that we do not divide by two for our first detections
IR White R = ADC Det R;
Avg Count++;
}
}
}

//This function takes an average reading of both IR sensors when the IR LED is on and over black
void black ir config(void)
{
P5OUT |=IR_LED;
JrExxxRRkNIUUST TURN ON IR LED BEFORE CALLING THIS

Avg Count=RESET REGISTER; //Reset any previous count
average = RESET REGISTER;
while(Avg Count <IR DETECTION SAMPLE RATE) //While our average count is

lower than our set sample rate, average both detectors then add them to the current average of black
varaible.

{
if(Avg_Count = RESET REGISTER)

{
IR Black L= (IR Black L + ADC Det L)/HALF AVG;
IR Black R = (IR Black R+ ADC Det R)/HALF AVG;
Avg Countt+;

}

else

This document contains information that is PRIVILEGED and Date: Document Number: Rev: Sheet:

CONFIDENTIAL; you are hereby notified that any dissemination
of this information is strictly prohibited. 05/01/2019 0-0000-000-0000-01 5D 70 of 73

Printed 12/13/19 5:07 PM

{
IR Black L =ADC Det L; //Set the default black variable to the first
average so that we do not divide by two for our first detections
IR Black R =ADC Det R;
Avg Countt++;
}
}
}

9.16. switch_processes.c

Description: This function establishes what happens when the buttons on the processor are pressed. The
left button controls the menu that is displayed and the functions that can be accessed while the button on
the right works as a selection button. When either button is not pressed, the debounce flag variable is set
to off. When the right button is pressed and the debounce flag is off, we set the select function variable
to on. This variable is set off in the function that it turns on. When the left button is pressed, we
increment the menu state variable. If the menu state variable is greater than the max number of menu
states, we reset this variable to zero. When either the left or the right button is pressed we set the
debounce flag on. When both the time has changed and the debounce flag is on, we wait for a set
amount of time before we allow the buttons to be pressed again.

extern char display linefNUMOFLINES][MAXCHRBREAK];
extern volatile unsigned char display changed;

extern unsigned int pindef;

extern char state;

extern unsigned int debounce flag;

extern unsigned int time_change;

int delay button = RESET STATE;

unsigned int menu_state = RESET STATE;

char select function = BUTTONNOTPRESSED;

void Switches Process(void)

{
if(P4IN & SW1) && (P2IN & SW2))
{
debounce flag = RESET STATE;
}
if(time_change && debounce flag == RESET STATE) //if we detect that there has
been an increase in time and we need to debounce
{
time change = RESET STATE; //reset our detection variable

if(delay_button++ >= WAITING4BUTTON) //if we detect that there has been a increase in time
larger than our set waiting time

{
delay button = RESET STATE; //reset our long term set waiting variable
debounce flag = TURNON; //set our button timer back to 1
This document contains information that is PRIVILEGED and Date: Document Number: Rev: Sheet:

CONFIDENTIAL; hereb ified that di inati
ot i informaton s sticty wranpio Y ST 05/01/2019 | 0-0000-000-0000-01 5D 71 of 73

Printed 12/13/19 5:07 PM

select function = BUTTONNOTPRESSED;

b
b

if(1(P4IN & SW1) && debounce flag != RESET STATE)
{

debounce flag = RESET STATE;

delay button = RESET STATE;

select function = BUTTONPRESSED;

}

if(1(P2IN & SW2) && debounce flag != RESET STATE)
{

debounce flag = RESET STATE;

delay button = RESET STATE;

if(menu_state >= MAXMENUSTATE-1)

{
menu_state = RESET STATE;
}
else
{
menu_state+-+;
}
}

}

10. Conclusion

Embedded systems were one of the most impactful classes to date that I have taken in my college
career. I really got to learn in depth how software interacts with hardware and all the different input and
output devices that you can give to a microprocessor.

We began the class with the PCB, and I learned about surface mount devices and the reflow process.
I got a lot of practice with through hole soldering and doing point to point tests. This knowledge will be
very useful for us later on in our careers.

One of the coolest concepts I learned in this class was pulse width modulation. This is how you turn
a device on for a percentage of the given time period.
Throughout the class, I learned how to make my operating system more efficient and how to turn
devices off after not using them.

Knowing what to do with the output from the devices attached to our car was also interesting to
learn. The black line detector circuit was the first device that we got to work with that gave data back to
our car. Making the car follow a black line seemed like a tremendous task at first but then after thinking
about the process at a very low level it was actually super easy.

This document contains information that is PRIVILEGED and Date: Document Number: Rev: Sheet:
CONFIDENTIAL; you are hereby notified that any dissemination
of this information is strictly prohibited. 05/01/2019 0-0000-000-0000-01 5D 72 of 73

Printed 12/13/19 5:07 PM

Serial Communication and the IOT project were considered to be the most difficult by our team.
Getting our board to communicate with another device seemed to be simple at first but many of us were
having a hard time processing the data because our code was running too slowly. Many of us had to
revisit older functions in our code that were slowing the overall system down and causing data loss.
Eventually everyone got serial communications and their [OT module to work properly.

We finished off the course with a project that involved tying together all of the previous projects. We
got the opportunity to work with communicating with our car through the internet. Some of us found it
easier to write a menu that our cars could interact with. Overall Embedded Systems was a really great
class.

An early issue that could have been avoided if we were more careful was shorting the mosfets on the
H-Bridge. This occurred because in our code we were writing functions that were making the car go
forward and reverse at the same time. This essentially shorts the H-Bridge and causes the mosfets to heat
up. The amount of damage varied between cars some of us were able to continue without replacing
anything. Other members had to replace some mosfets because they were no longer working.

Another issue that our group had was IOT modules shorting themselves. The mounting pins that the
IOT module has was drilling into the ground plane in the PCB. Two members in our group experienced
this problem and the fix was to lift the IOT module up and cover the PCB with insulating tape.

One thing that went wrong this semester was the power system for the car. The issue revolved
around the car shutting off the moment the motors of the car switched on. My group spent many hours
trying to figure out a solution to the problem. At first, we thought that the motors where pulling too
much current that the battery pack could not support it which in turn caused the processor to brownout.
Some members of our group implemented a separate power supply for the motors to try to isolate the
issue, but this did not fix the issue.

This document contains information that is PRIVILEGED and Date: Document Number: Rev: Sheet:

CONFIDENTIAL; hereb ified that di inati
ot i informaton s sticty wranpio Y ST 05/01/2019 | 0-0000-000-0000-01 5D 73 of 73

