
LSTM Implementation
Bennett James

Abstract

 In one of my master’s classes, ECE564, which I took as a first semester senior
year while in the Accelerated Bachelor’s and Master’s program at NC State. I was tasked
with implementing an LSTM specifically the g(t) gate. This entails implementing
functions for matrix multiplication, tanh, as well as both reading and writing to memory.
To implement this, I separated my hardware into 3 stages. The first consisted of reading
data from weight values and input values while matrix multiplying using a Design Ware
multiplier. Once my accumulations were finished, they would go into a tanh function
that would grab tanh values based upon inputs and interpolate data for maximum
accuracy. After interpolations were completed the data was put stored in SRAM and the
testbench saved the values in a g_result.dat file.

1. Introduction

The hardware being implemented was an LSTM specifically the g(t) gate. The
function of this hardware is to implement a part of a LSTM (Long Short Term Memory
Cell). The particular part I have implemented is the g(t) gate which consists of
performing matrix multiplication of a 16x16 weight matrix by a 16x1 input and then
performing the tanh function of this value. To implement this I separated my hardware
into 3 stages. The first consisted of reading data from weight values and input values
while matrix multiplying using a Design Ware multiplier. Once my 16 accumulations
they would go into a tanh function that would grab tanh values based upon inputs and
interpolate data for maximum accuracy. After interpolations are completed the data was
put stored in SRAM and the test bench saved the values in a g_result.dat file.

The results of my design will be explained in more detail later in this report but as an

overview I was able to pass all test cases in the demo files using modelsim as well as
synthesize my design using synopsys2017 without having any major warnings or errors.

Throughout this report I plan to go over the micro-architecture and dive into the way I
implemented my matrix multiplication function, my tanh function, and my data path.
Then will touch on the interface between modules and how I connected the different
functions together. The report will end with verification methods used as well as all
results.

2. Micro-Architecture

 To implement the high-level functions that are needed for the g(t) you need to be
able to perform both matrix multiplication and the tanh function while reading in data.
The most important aspect to implementing these functions is sign extending your
registers to line up the decimal point in your number before performing calculations.

i. Reading and Writing

Accessing memory is very important in the function of this hardware. With

regards to reading, I had to design hardware to read the weight values, the inputs, and the
tanh values. To maximize efficiency in my design during my accumulate I was already
referencing the next value to be read in for the next clock cycle as the previous inputs
were multiplied and stored to eliminate any burned clock cycles that would result from
using more states in my FSM.

For writing it was a simpler design as the only thing you had to do was write the

output values to the correct address in SRAM but I had ensure I had pulled the write
enable signal high at least one clock cycle prior to attempting to store data and to reset
the write address in between rounds.

ii. Matrix Multiplication

To do this I performed matrix multiplication of a 16x16 matrix with a 16x1 matrix

which would output a 16x1. This would need 256 multiplications to complete and there
would be 16 outputs, and this would occur 16 times to iterate through the whole input file
which contains 256 input values. When performing multiplications, I performed it by
multiplying down the columns vertical without having to change the input value but the
changing the direction of the output after each multiplication. The two inputs were 16 bit
signed fraction numbers in which I was given a 32 bit number. With bits [31:30] being
sign bits, bit 30 was dropped and the result was then accumulated with the current value
in the respective accumulation register. The accumulation registers were 35 bits to allow
for bit 34 to be the sign bit, bits [33:32] were used to check for saturation, [31:30] were
integer bits and the fractions bits were [29:0]. When accumulations were done the value
would be checked for saturation as for this project is a value was +/- 3.984375 the output
was only marginally different. When al 16 accumulations were complete the done signal
would go high causing the controller to stop sending the run signal and the run signal for
tanh would go high.

iii. Tanh function

To implement this function, I was given a file containing 16-bit values for tanh

inputs between 0 and 3.984375, these tanh values were only accurate up to the 6th fraction
bit while my outputs from matrix multiplication were accurate up until the 29th fraction
bit. To start the calculation, I would look at the sign bit of my input and convert the
number to an unsigned binary if necessary while saving the sign bit for conversion back
after the tanh value is calculated. To maximize accuracy when getting tanh values from
the respective file, I would reference in memory the value that was accurate to my inputs
first 8 most significant bits and this would be the lower bound from here I would save the
value one above the as the upper bound as long as the input was not saturated in which
the next step would be skip and the lower bound would be directly outputted. After
receiving both the high and low bounds. Linear interpolation would be performed to

maximize accuracy. The input to the tanh function initially was a 32 bit number therefore
the addresses that were used in the lookup table were sign extended to 32 bit with
emphasis on the placement of these bits to account for the decimal point. After
performing the function below a 64 bit unsigned number was generated. From here bits
[59:45] of this calculated value were assigned to an output reg after sign correction was
performed the sign corrected value would then be stored on the same registers, I stored
the accumulations on previously. This was performed for all 16 values and when
finished a done signal was sent to signal the controller to begin writing these values to
memory.

iv. High Level Architecture

My design was initialized when the testbench pulled down the reset signal which

was fed directly into my controller module and then shortly after would increment the run
cycle high for one clock cycle. From here the controller would put the busy signal high
to signal to the testbench calculations were being performed. Then the controller would
initialize each stage as necessary based upon several variables and counters used to track
the progress of the calculations. A diagram of the high-level architecture can be seen
below. Once completed the busy signal would be dropped and the testbench would either
put the run signal high again causing another round to begin or finish the simulation.

v. The Datapath

 After the controller was initialized and the first stage of the hardware was entered
which contained the reading and accumulating. The data for the weights and inputs
would be stored on respective wires and put into a DesignWare multiplier this output
value would be fed into the accumulation module to be accumulated with the previous
accumulation values and the number of accumulations done were tracked to signal when
complete. This was done 256 times as this is the number of multiplications required to
complete a 16x16 times 16x1 matrix multiply. From this stage the data would next be
used in the tanh stage. Within tanh the data would be used to address the high and low
values known in memory and then interpolated using the methods described in section
2.ii. Once tanh had been completed on the current set of 16 values, we were dealing with
the write run signal would be put high to allow for these values to be written to memory.
Once this was complete a counter would be incremented this counter was used in a
condition statement that waited for the total number of run to be equal to 16 which would
signal, we had written all 256 inputs and the calculations we were asked to perform were
complete. Signaling the controller to lower the busy signal and relieve control to the
testbench to signal the next action.

3. Interface Specification

From top level the test bench only had a few interactions with my design. The test
bench would send a reset signal and a run signal, and my design would output a busy
signal to the testbench. The reset signal was sent on initialization and the run signal was
sent in between “rounds” which consisted of 256 inputs each. Below is a full list of
registers and wires used in my design both to interact between modules and internally.

Controller
Signal Name/Width (bits)

Type of signal,
connecting module

Function

run, reset (1) Input, testbench Reset is pulled low for one clock cycle on initialization and
run is high for one clock cycle to start a new round

Busy (1) Output, testbench Tells testbench that it is still working
Done signals (accum, tanh,
and write)

Input, lower level FSMs Received signals from each other FSM signaling to go to
next step

Control signals (accum, tanh,
and write) (1)

Output, lower level
FSMs

Controls each lower level FSM and whether or not it
should run

Reset signal (accum, tanh,
write) (1)

Output, lower level
FSMs

Resets each FSM based upon conditions for reset whether
in between sets of 16 inputs or rounds (256 inputs)

Mem_reset (1) Output, read module When run signal from testbench is received this signal goes
high

Read Module
Signal Name/Width (bits)

Type of signal,
connecting module

Function

run, reset, full_reset (1) Input, controller Comes from the controller to reset/run read
num_of_accumuation (8) Input, accumulation Keeps track of number of accumulations completed
stage_done (1) Output, controller Once 256 accumulations stage is complete
sram_read_address,
g_read_address (12)

Output, testbench Addresses in memory we are requesting values from

row_increment,
col_increment (9)

Internal Used to keep track of the memory locations we were
reading from

state, next_state (3) Internal Keeps track of state for the FSM controlling the read
module

Accumulation Module
Signal Name/Width (bits)

Type of signal,
connecting module

Function

run, reset (1) Input, controller Run and reset signals from controller
out_mult (16) Input, DW02_Mult Output from the DW02_mult
num_of_accumulations (8) Output, accumulation Tracks number of accumulations complete
current_output (33) Output, modulelinks Determined by mult_select and is stored in global reg
done_vals (4) Output, controller Determines which global reg the current_output is stored
saturation_temp (35) Internal Reg with 2 extra bits to check for saturation
mult_select (4) Internal Selects where we are adding the current value of out_mult

too
initialize_flag (1) Internal Initialized all necessary outputs and registers

Tanh
Signal Name/Width (bits)

Type of signal,
connecting module

Function

run, reset (1) Input, controller Run and reset signals from controller
tanh_in_lookup (33) Input, modulelinks Value coming in from accumulation
tanh_mem_val_in (16) Input, testbench Value incoming from tanh address
tanh_mem_addr (12) Output, testbench Address referencing in memory
interpolated_val (15) Output, tanh sign correct Interpolated value which goes to check for sign correction
tanh_sign_out (1) Output, tanh sign correct Sign of accumulated in value and goes out with

interpolated value
interpolations_done (4) Output, modulelinks When an interpolation is done selects next value to be

interpolated.
ready_for_write (4) Output, modulelinks When an interpolation is done selects where to store the

current value
stage_done (1) Output, controller Signal controller are tanh calculations are complete
interpolated_val_temp (64) Internal Number containing the sum of the 2 im_vals
state, next_state (4) Internal States for FSM
unsigned_tanh_lookup (32) Internal Unsinged value of the input value
tanh_mem_addr_hi (32) Internal Address of the high value for tanh lookup
Tanh_mem_addr_lo (32) Internal Address of the low value for tanh lookup
extended_tanh_mem_addr_lo
(32)

Internal Sign extended high address with emphasis on decimal
point

extended_tanh_mem_addr_hi
(32 bits)

Internal Sign extended low address with emphasis on decimal point

bit_extended_tanh_hi (32) Internal Bit extended tanh high value
bit_extended_tanh_lo (32) Internal Bit extended tanh low values
im_val1,2 (64) Internal Calculations were intermediary multiplication signals

Tanh sign correction
Signal Name/Width (bits)

Type of signal,
connecting modules

Function

unsigned_tanh_in (15) Input, tanh From tanh module value is passed here for sign correction
tanh_sign_in (1) Input, tanh Determines if sign correction is needed
signed_tanh_out (16) Output, modulelinks Correct signed value is outputted here

Write
Signal Name/Width (bits)

Type of signal,
connecting modules

Function

run, reset, full_reset (1) Input, controller Runs and resets write module based upon controller
write_select (4) Output, moduleslinks Selects which modulelink value we are writng to memory
write_address (12) Output, testbench Address in memory where we are storing data
write_enable (1) Output, testbench Must be enabled before data can be written
stage_done (1) Output, controller Signaled once all necessary data for current stage is

complete
next_state, state (3) Internal States for FSM

4. Technical Implementation

At a high level my hardware contains a main controller and 3 lower level controllers
depending on the stage of calculations. When modeling my controller my main point I
had to base it around was referencing memory because depending on which calculations
we were doing, and the time needed to gather all the data from memory. This would
change throughout each stage as for multiplication data could be continuously read,
multiplied, and stored as while for the tanh function you needed to read two addresses
before making one calculation. My first stage reads and accumulated it is streamlined to
allow for when a value is received the next value is already being requested maximizing
efficiency and for this stage to be completed as quickly as possible. The second stage
was tanh, this was a more complex stage and could not be as streamlined due to having to
reference two points in memory before performing the first calculation. To maximize
timing here the FSM I implemented saves a value and requests the next value
simultaneously to allow for the second received to be received on the next clock edge.
The third and final stage was write, this stage was done in a very similar fashion to the
first stage where we were reading from memory. It was streamlined and each high level
register was referenced and outputted while incrementing the memory register to have the
next address ready next clock cycle to directly reference the next value. Once all three
stages were completed and write had sent its done signal to the controller the controller
would check the total number of inputs we had iterated over if we had not iterated over
all 256 inputs then the FSM would be reset while saving the memory addresses were next
read and save points to therefore implement through again and save those values in their
respective addresses. Once all 256 outputs had been written the high level controller
would lower the busy signal and the test bench would take over by either sending another
run signal to perform another round of calculations or finish the simulation in which the
accuracy of your gate could be seen.

5. Verification

When testing my g(t) gate, I used a test bench that would compare my results against
a file containing the expected results. The test bench measured accuracy up to a tolerance
of 0.0039 and would also state what your accuracy would be if the tolerance were
expanded to 0.0078. Both the expected results and my outputs were in .dat files and
consisted of 16 bits. My numbers were accurate to the 16th bit in most cases with the
only difference being the rounding of LSB.

6. Results Achieved

After running my design through the testbench, my design met 0.0039 tolerance
that was set by the testbench for all inputs. When synthesizing my design through
synopsys I was able to achieve a clock cycle of 1.4 ns, an area of 15786.568 um2 and a
total power usage of 5.5274 mW.

7. Conclusions

After completing this project, I have gained an understanding behind the
implementation of an LSTM even though I only implemented the g(t) gate. I have
successfully implemented both matrix multiplication and a tanh function. My results
were accurate of to the 16th bit with the expected results and the testbench stated I had
100% accuracy with my results due to the tolerances it had set which was 0.0039. With
regards to an LSTM the only other large functions are sigmoid functions and Hadamard
product. Though the full LSTM is much more complex with many parts integrating
together this was a base that from here I could with adequate time design and implement
the full LSTM.

Appendix

Timing Report

Area Report

Power Report

