Bennett James

10/24/19
ECE560
1. Existing Read
12C : N p——————dhinwr ||noi Il Jrhioeo  [fhoo  ]]hos | [ho1 | |hzo | nar | 5 Il b=
Clock '
S st 1 11 T Y Y e 1N 1 0
RTCS Tick DIO 2 I '
RTCS Scheduler DIO 3 ]
Task Motion Sen: DIO 4 I
12C Code 10 5 | L
Msg on Bus I I_
12C Busy-Wait | | I | U U U | L
LED_STS D10 8 [
-30us 1] ui 30us G0 us 90 us 120 us 150 us 180 us 210 us
lrigger Discovery2MI SN:210321A1A515 -]

Task Motion Sensor is active the whole time the code is running. Never goes low.

Task Motion Sensor runs every 20 ms as per the add task function that is rate and the Tick rate
declared for it at 50Hz.

For one message the Message on bus signal is high for 221.4 microseconds.
For a single message transmission the 12C Busy wait signal is

25.35 + 23.14 + 27.69 + 23.53 + 22.49 + 22.49 + 22.62 + 22.49 + 22.62 = 212.42 microseconds



Bennett James
10/24/19
ECE560
2. Existing Write

———— e —— —— . —— ———mm e m e -

.. o A
12c ! Ny r— kD WR | [hoo T Ihioro | [hia | —

Clodk

Data DIO 0 L LT UL L LU [ ETL R
3

RTCS Tick ' DIO 2
RTCS Scheduler [ DIO 3
Task Motion Ser: | Dio 4
12C Code I

o - —
Msg on Bus ' I i I L_
I2C Busy-Wait | ﬂ | : | ! u |_._

LED_5TS : DIO 8

-15us 0 ui 15us 30 us 45us 60 us 75us 90 us 105 us 12C

rigger Discovery2MI SN:210321A1A515 | [—F St

The Msg on Bus signal is high the whole time write is called for which is about 102.6
microseconds.

I12C Busy Wait is high for about 100.1 microseconds during write.

254 +23.6 +27.7+23.4 =100.1 microseconds



Bennett James
10/24/19
ECE560

3. Task _12C_Server_FSM function

For the Task _12C_Server_FSM it is running in response to the Task_Motion_Sensor_FSM
states. There are only 3 actual states that are described in the case statement which are the
g_l2C_Msg.Command switch statement. The i2c_write_bytes FSM and i2¢c_read_bytes FSM
have more FSM logic and are shown below as well.

SET_BITIDEBUG_I2C_CODE);

T

Code runs no matier state

if{init_mma_done == 0}

data_lytes = 1 dats_bytes = 2 - \ "
rag_addr = REG_WHOAMI reg_addr = REG XHI swichip 1 i=a Commend)

CLEAR. BIT(DEBUG |2C. CODE} -

Y

g_IZC_Msg.Command = NOME

iZc_read bytes FSM{MMA_ADDR, ]
CLEAR_ BIT(DEBUG_[2C_CODE)

reg_addr, data, data_bytes)

»

{120 Mzg.Command = NONE A

i20_write_bytes MMA_ADDR,
CLEAR_BIT(DEBUG_12C_CODE)

reg_addr, data_byies)

ki

if{{g_I2C_Ms=g.5tatus = READ COMPLETE) &
(p_I2C_Msp.Status = WRITE_COMPLETE) &
{g_I2C_M=g.Status = IDLE))

A
L

RTCE_Relesse Task
[Task_I2C_Server FSM) Code to reesse 13sks no matier state

filg_2C_Msg.Status == READ_COMPLETE) |
{g_12C_Msg.Status == WRITE_COMPLETE} |
{g_I2C_Msg Status == |DLE])

RTCE_Release_Task
{Task_Meation_Sensar_FSM)

> End Function




Bennett James
10/24/19
ECE560
Flowchart for i2c_write_bytes FSM

W_TRANS_DEV_ADOR
50

VW WAITT > lock_detectes
51
W_TRANS_REG_ADDR
52
T ( (12C0-5 & 12C_5 IICIF_MASK)==0) & g
w_\:;rrz lock_detect < LOCK DETECT THRESHOLD lock_detect++
W_NUM_BYTE_CHECK W_STOP
54 8
- )
i [ {12C0->5 & 12C_S_IICIF_MASK) ==0) &
{ lock_desect < LOCK_DETECT THRESHOLD ) i Scien
W_WAIT3
55 F
. 2C0->5 1= 12C_5_IICIF_|

CLEAR_BIT{DEBUG 12C_BUSY_WWaIT




Bennett James
10/24/19
ECE560
State Transition Diagram for Write FSM Operation

Wisit Conditions
nct met
i

=0

Wait Conditions
niot et

num_kbytes written < data_cownt

Wit Conditions
not met

For ease of design the condition for “Wait Conditions” were not explicitly stated here but can
easily be seen in each state in the corresponding states in the flowchart



Flowchart for i2c_read_bytes FSM

R_TRANS_DEW_ADDR
50

R_WWAIT
51

R_TRANS_REG_ADDR
52

R_WAIT2
g3

F_RSTART
54

R_WAma

R_REC
S8

Bennett James
10/24/19
ECE560

i { 12C0->5 & 12C_S_IICIF_MASK j==0)&
{ bock_detect < LOCK_DETECT_THRESHOLD Jj

look_deteciss

. 12C0-25|=12C_5 _IICIF_MASE
CLEAR BIT{DEBUG 12C BUSY WAIT)
12C0-=0 = reg_adx

) lock deteci =0
SET_BIT(DEBUG [2C_BUSY WAIT)

i ({12008 & 12C_S_lICIF_MASK)==0)&
{ hock_detect < LOCK,_DETECT_THRESHOLD })

12C0-25 |= 12C_5_HCIF_MASK
CLEAR BIT{DEBUG 12C_BUSY _WWAIT)
IC2_M_RSTART
12C0-=0 =reg_sdx
back_deteci=10
SET_BITIDEBUG [2C BUSY WAIT)

i {{ I2C0->5 & 12C_5_IICIF_MASK) =10} &

{ lock_detect = LOCK, DETECT_THRESHOLD )

lock_detects+



NUM_BYTE_CHECK
57

IS_LAST READ_CHECK
58

R_WAITS
sg

R_STOP
510

Bennett James
10/24/19
ECE560

if{ ( { 12C0->S & 12C_S. IICIF M}—n;;
[h&tm:mx DETECT_THRESHOLD )




Bennett James
10/24/19
ECE560
State Transition Diagram for Read FSM Operation

22020

Wait Conditions WWait Conditions
not met nat met

/’x -
55
Wait Conditions.
not met

Wait Conditions
not met

For ease of design the condition for “Wait Conditions” were not explicitly stated here but can
easily be seen in each state in the corresponding states in the flowchart



4. Task_Motion_Sensor_FSM function
This function must account for both the init_mma function and communicating with the
Task_I2C_Server_FSM to read the accelerometer and once reading is complete to flash the

LEDs accordingly.

SET_RITIDESUG_TASK_MOTION_SENSOR)

Bennett James
10/24/19
ECE560

iiinit_mma_done == 0)

g_12C_Msg.Command = READ;

=0
INITIALIZE_MMA

=1

CHECK_READ COMPLETE

IS_12C_IDLE
e g_I2C_Mz=g.Command = READ
54
READ_XYZ
S5
ifig_I2C_Msg Status ==

READ_COMPLETE)

temg{0] = (data[0]<<8) + data[1]
teme1] = (d=ta[Z]<<8) + dats(3]
temp{Z] = {data[4}<<8) + datal5

Control RGE_LED={1.0.0}

™ wihile {1}

ace_X = temp[0]'4
ace Y = temp[1]4
ac_Z = tempf2l4

CHECK_DATE
52

12C_Msp Status == WRITE_COMPLETE

Control_RGB_LEDs{D,0.0)
init_mrna_done = 1
g_I2C_Msg Status = IDLE

WRITE_DONE_MNMA

53

LED_BASED_ON_XYZ

¥

ifi{g_[2C_Msg.Command == READ)
| {g_I2C_Meg Command == WRITE])

rf = abs{prev_acc. X- ace X} > ACC_SENSITIVITY 71:0
gf = abs{prew_ace Y - ace )= ACC_SEMNSITMTY ¥1:0
bf = abs(prev_acc Z - ace Z) > ACC_EENSITMITY 21:0

SET_BIT(DEBUG LED STE}
=3 Contral RGE_LEDs(r, gf, bf}
prev_aco X =aocc X
prev_acc X = aocc X
prev_acoc X=aoc X

LED: WAIT1
ST

LED CONTROL_OFF
SB

LED_WaIT2
58

if[Flash_delay_timer ==
LASH_DELAY_DOMEX,

RTCS_Felezse_Task(Task |20 _semer FSM)

l

CLEAR_BIT(DEBUG_TASK_MOTION_SENSOR)




Bennett James
10/24/19
ECE560
State Transition Diagram for Read FSM Operation

init_mrns_dons

IRead_Complets

IRead_Complete

Wisit Condition
not met

. iR

MWrite_Complete

Vizit Condition
not met

Relgaszs_Tasks



5. 12C Read Operation Update
Mame Pin
12C N —fhwwr|fho1 I Ihioeo [|hoo
Clock DIO
RTCS Tick 1
RTCS Scheduler ||

T | Done I&DS«G samples at 7.69232 MHz | 2015-10-24 17:13:56.144

Bennett James
10/24/19
ECE560

. || S [

| EEEE | ETR J{hoo | ES Inio I —

* TTRILNTE_I0NTTDL 1OVTRAON  DNONTHUD (UURTAD DODUNTAL THUNTHL HODNTRD DOONTTM [

[ I

[ R | N |

Task Motion Sen: DIO 4 |
12C Code m
Msg on Bus DIO 6§

12C Busy-Wait

| |

=
E

gl |

LED_STS DIO 8
-15 us ‘ 1Sus 45us 75 us 105 us 135us 165 us 195 us 225 us 255 us 285 us
al Trigger Discovery2NI SM:210321A1A515 | | Status: OK 8
= Dud 15us Hus 515 &0 s THUE o0 s W5us 12 us 135us
6. 12C Write Operation during accelerometer initialization
Mame Pin T | Done |4096 samples at 25 MHz | 2019-10-24 17:12:38.227 o "" 2 (s
12C Ny r—lhiD WR | [hoo | |re-start]hip RD | [hia | |stop e
Data DIO 0 L L 1 UL L 1 UL 1
RTCS Tick [ i
RTCS Scheduler |

Task Motion Sen: DIO 4

12C Code E | ” ” " " ”
Msg on Bus I :
12C Busy-Wait i P11l L1111 111111 L1111
LED_STS DIO 8
: ; X1: 17.06 us + :
-15us a ui 15us 30 us 45 us 60 us 75us 90 us 105 us 120us 135us
rigger Discovery2MI SMN:210321A1A515 = g Status: OK &5

T ¥ W STrD-

sanA ot am



Bennett James
10/24/19
ECE560

7. Trigger Tasks Approach

When deciding how to trigger my tasks | used the trigger hints given and came
up with for
- Task Motion_Sensor FSM
- This task would release Task 12C_Server FSM if
g_l2C_Msg.Command was equal to read or write
- It would also adjust the period for which
Task_Motion_Sensor FSM would occur to account for delay
function2
- Task 12C_Server FSM
- Would trigger itself if status was equal to reading or writing
- Would trigger Task_Motion_Sensor_ FSM if status was equivalent
to read_complete or write_complete.



Bennett James

10/24/19
ECE560
8. 12C Read Operation: Event Triggered
Mame Pin T | Done |4096 samples at 10 MHz | 2018-10-24 17:02:43.591 B E
12C ! Ny =——tdhiD WR] |ho1 I |hioro |[moo |Ihio |{hoi! || S | (== |Ihca | 5 top fr—
ot TF UM _MUTIL TUTOML T O A W DU
Data DI 0 LTI M L1 | nl . Ml [ 1L L
ATCS Tick ; _ I
RTCS Scheduler [ [ERGRE e an
Task Motion Sen: | DI 4 |_|ﬂﬂ ﬂﬂ_ﬂ_ﬂf
Msg on Bus SO o Ll x:asus : _
12C Busy-Wait | NN NN N R [ 1] [ 1 | | [
LED_STS N | Dios [
-20us ‘ 20us 60 us 100 us 140 us 180 us 220us 200 us 300us 340 us

| Trigger Discovery2MI SM:210321A1A515 = Stah

—

This screenshot shows the Task_Motion_Sensor_FSM goes high for a slight period of time at
the beginning and calls Task_I12C_Server_FSM to run its FSM until the read is complete and
once complete the Task_Motion_Sensor FSM will process these values and light the LEDs
accordingly. The other FSM is triggered through event triggering. At the end of the second
picture you can also see the 12C_Busy_Wait signal go high signifying that the LED is in a delay
and the LED is on.



Bennett James
10/24/19
ECE560

9. 12C Write Operation: Event Triggered

Mame Pin T | Done |4055 samples at 7.65923 MHz | 2019-10-24 17:00:54.745 B '7' LY
12C N p—lhipwr | JnoD | |restart [hipre [ ]hia | |5top  |rm—
LI ULl L _TUr LT Ll MU
RTCS Tick DIO 2 1 : ! :
RTCS Scheduler IO 3 JEEEENEEIEE NN RN ENEEREEENy
Task Motion Sen: DIO 4 X1: -10us : : |l
Msg on Bus PIO 6 _I : i |;
12C Busy-Wait [ 11 | 11 | 1i1 1 I :
LED_STS DIO 8
X -10us ‘8 us 26 us 44us 62 us 30 us 98 us 116 us 134 us 152 us 170 us

Manual Trigger

Discovery2MI SM:210321A1A515 ~

Status: OK i

T T T

T OGO I T OO LTEs oo L eI T T F

This shows the 12C communications that were in the init_mma function when in blocking

but have been moved to an FSM.

10. Time Delay between sending a read request to the LED light turning on.

a. Delay now in the optimized code with FSM it takes 281.5 microseconds from the
time the read command is sent for the LED to turn on.

b. Delay from initial code whenever just the FSM was used and before the
Release_Task calls were used the delay was 278.4 microseconds.

c. How does the delay depend on the period of each task?

i. |based the delay that was used for the FLASH_DELAY based upon the
PIT timer.. By adding a variable in the interrupt that incremented every
time the interrupt was called for. | measured the timing off the Delays by
running the delay function and determining how long many ticks of the
PIT interrupt it went through.

If any of my diagrams are difficult to read they can also be seen at this link.
Flowcharts Drawings, must open in draw.io to see all



https://drive.google.com/file/d/1eaT_4UX-elFEKAYWsGhKkq6LwwhXZtJ_/view?usp=sharing

