
Bennett James 
10/24/19 
ECE560 

1. Existing Read 

 
Task Motion Sensor is active the whole time the code is running. Never goes low. 
 
Task Motion Sensor runs every 20 ms as per the add task function that is rate and the Tick rate 
declared for it at 50Hz.  
 
For one message the Message on bus signal is high for 221.4 microseconds. 
 
For a single message transmission the I2C Busy wait signal is 
 
25.35 + 23.14 + 27.69 + 23.53 + 22.49 + 22.49 + 22.62 + 22.49 + 22.62 = 212.42 microseconds 



Bennett James 
10/24/19 
ECE560 

2. Existing Write 

 
 
 
The Msg on Bus signal is high the whole time write is called for which is about 102.6 
microseconds. 
 
I2C Busy Wait is high for about 100.1 microseconds during write. 
 
25.4 + 23.6 + 27.7 + 23.4  = 100.1 microseconds 

  



Bennett James 
10/24/19 
ECE560 

3.  Task_I2C_Server_FSM function 
 
For the Task_I2C_Server_FSM it is running in response to the Task_Motion_Sensor_FSM 
states.  There are only 3 actual states that are described in the case statement which are the 
g_I2C_Msg.Command switch statement.  The i2c_write_bytes_FSM and i2c_read_bytes_FSM 
have more FSM logic and are shown below as well. 



Bennett James 
10/24/19 
ECE560 

Flowchart for i2c_write_bytes_FSM 

  



Bennett James 
10/24/19 
ECE560 

State Transition Diagram for Write FSM Operation 

 
For ease of design the condition for “Wait Conditions” were not explicitly stated here but can 
easily be seen in each state in the corresponding states in the flowchart  



Bennett James 
10/24/19 
ECE560 

Flowchart for i2c_read_bytes_FSM 

 
 
 



Bennett James 
10/24/19 
ECE560 

  



Bennett James 
10/24/19 
ECE560 

State Transition Diagram for Read FSM Operation 

For ease of design the condition for “Wait Conditions” were not explicitly stated here but can 
easily be seen in each state in the corresponding states in the flowchart  



Bennett James 
10/24/19 
ECE560 

4. Task_Motion_Sensor_FSM function 
This function must account for both the init_mma function and communicating with the 
Task_I2C_Server_FSM to read the accelerometer and once reading is complete to flash the 
LEDs accordingly. 

 
 



Bennett James 
10/24/19 
ECE560 

State Transition Diagram for Read FSM Operation 

  



Bennett James 
10/24/19 
ECE560 

5. I2C Read Operation Update 

 
 
 

6. I2C Write Operation during accelerometer initialization 

 
 
  



Bennett James 
10/24/19 
ECE560 

7. Trigger Tasks Approach 
- When deciding how to trigger my tasks I used the trigger hints given and came 

up with for  
- Task_Motion_Sensor_FSM 

- This task would release Task_I2C_Server_FSM if 
g_I2C_Msg.Command was equal to read or write 

- It would also adjust the period for which 
Task_Motion_Sensor_FSM would occur to account for delay 
function2 

- Task_I2C_Server_FSM 
- Would trigger itself if status was equal to reading or writing 
- Would trigger Task_Motion_Sensor_FSM if status was equivalent 

to read_complete or write_complete.  



Bennett James 
10/24/19 
ECE560 

8. I2C Read Operation: Event Triggered 

 
 
This screenshot shows the Task_Motion_Sensor_FSM goes high for a slight period of time at 
the beginning and calls Task_I2C_Server_FSM to run its FSM until the read is complete and 
once complete the Task_Motion_Sensor_FSM will process these values and light the LEDs 
accordingly.  The other FSM is triggered through event triggering.  At the end of the second 
picture you can also see the I2C_Busy_Wait signal go high signifying that the LED is in a delay 
and the LED is on. 
  



Bennett James 
10/24/19 
ECE560 

9. I2C Write Operation: Event Triggered 

 
 
This shows the I2C communications that were in the init_mma function when in blocking 
but have been moved to an FSM. 

 
10. Time Delay between sending a read request to the LED light turning on. 

a. Delay now in the optimized code with FSM it takes 281.5  microseconds from the 
time the read command is sent for the LED to turn on. 

b. Delay from initial code whenever just the FSM was used and before the 
Release_Task calls were used the delay was 278.4 microseconds. 

c. How does the delay depend on the period of each task? 
i. I based the delay that was used for the FLASH_DELAY based upon the 

PIT timer..  By adding a variable in the interrupt that incremented every 
time the interrupt was called for.  I measured the timing off the Delays by 
running the delay function and determining how long many ticks of the 
PIT interrupt it went through.  

 
 
If any of my diagrams are difficult to read they can also be seen at this link. 
Flowcharts Drawings, must open in draw.io to see all 
 

https://drive.google.com/file/d/1eaT_4UX-elFEKAYWsGhKkq6LwwhXZtJ_/view?usp=sharing

